满分5 > 初中数学试题 >

如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与C...

manfen5.com 满分网如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.
(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.
(1)由对应两角相等,证明两个三角形相似; (2)如解答图所示,过点M作MN⊥QC于点N,由此构造直角三角形BMN,利用勾股定理求出y与x的函数关系式,这是一个二次函数,求出其最小值; (3)如解答图所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围. (1)证明:∵∠QAP=∠BAD=90°, ∴∠QAB=∠PAD, 又∵∠ABQ=∠ADP=90°, ∴△ADP∽△ABQ. (2)【解析】 ∵△ADP∽△ABQ, ∴,即,解得QB=2x. ∵DP=x,CD=AB=20,∴PC=CD-DP=20-x. 如解答图所示,过点M作MN⊥QC于点N, ∵MN⊥QC,CD⊥QC,点M为PQ中点,∴点N为QC中点,MN为中位线, ∴MN=PC=(20-x)=10-x, BN=QC-BC=(BC+QB)-BC=(10+2x)-10=x-5. 在Rt△BMN中,由勾股定理得:BM2=MN2+BN2=(10-x)2+(x-5)2=x2-20x+125, ∴y=x2-20x+125(0<x<20). ∵y=x2-20x+125=(x-8)2+45, ∴当x=8即DP=8时,y取得最小值为45,BM的最小值为=. (3)【解析】 设PQ与AB交于点E. 如解答图所示,点M落在矩形ABCD外部,须满足的条件是BE>MN. ∵△ADP∽△ABQ, ∴,即,解得QB=a. ∵AB∥CD,∴△QBE∽△QCP, ∴,即,解得BE=. ∵MN为中位线,∴MN=PC=(a-8). ∵BE>MN,∴>(a-8),解得a>12.5. ∴当点M落在矩形ABCD外部时,a的取值范围为:a>12.5.
复制答案
考点分析:
相关试题推荐
 如图,在平面直角坐标系中直线y=x-2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).
(1)求反比例函数的关系式;
(2)将直线y=x-2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.
查看答案
manfen5.com 满分网如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)
查看答案
某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.
查看答案
从甲、乙、丙、丁4名选手中随机抽取两名选手参加乒乓球比赛,请用画树状图或列表的方法列出所有可能的结果,并求甲、乙两名选手恰好被抽到的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.