满分5 > 初中数学试题 >

已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥A...

已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
求证:(1)△BFC≌△DFC;
(2)AD=DE.

manfen5.com 满分网
(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC≌△DFC. (2)要证明AD=DE,连接BD,证明△BAD≌△BED则可.AB∥DF⇒∠ABD=∠BDF,又BF=DF⇒∠DBF=∠BDF,∴∠ABD=∠EBD,BD=BD,再证明∠BDA=∠BDC则可,容易推理∠BDA=∠DBC=∠BDC. 证明:(1)∵CF平分∠BCD, ∴∠BCF=∠DCF. 在△BFC和△DFC中, ∴△BFC≌△DFC(SAS). (2)连接BD. ∵△BFC≌△DFC, ∴BF=DF,∴∠FBD=∠FDB. ∵DF∥AB, ∴∠ABD=∠FDB.∴∠ABD=∠FBD. ∵AD∥BC, ∴∠BDA=∠DBC. ∵BC=DC, ∴∠DBC=∠BDC. ∴∠BDA=∠BDC. 又∵BD是公共边, ∴△BAD≌△BED(ASA). ∴AD=DE.
复制答案
考点分析:
相关试题推荐
(1)计算 manfen5.com 满分网+manfen5.com 满分网
(2)先化简后求值:当manfen5.com 满分网时,求代数式manfen5.com 满分网的值.
查看答案
如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、En,分别记△BCE1、△BCE2、△BCE3…△BCEn的面积为S1、S2、S3、…Sn.则Sn=    S△ABC(用含n的代数式表示).
manfen5.com 满分网 查看答案
如图,D是反比例函数manfen5.com 满分网的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=-x+m与manfen5.com 满分网的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为   
manfen5.com 满分网 查看答案
如图,过正方形ABCD的顶点B作直线l,过A、C作l的垂线,垂足分别为E、F.若AE=1,CF=3,则AB的长度为   
manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.