如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);
(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数;
(3)如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长.
考点分析:
相关试题推荐
某公司准备投资开发A、B两种新产品,通过市场调研发现:
(1)若单独投资A种产品,则所获利润y
A(万元)与投资金额x(万元)之间满足正比例函数关系:y
A=kx;
(2)若单独投资B种产品,则所获利润y
B(万元)与投资金额x(万元)之间满足二次函数关系:y
B=ax
2+bx.
(3)根据公司信息部的报告,y
A,y
B(万元)与投资金额x(万元)的部分对应值如下表所示:
(1)填空:y
A=______;y
B=______;
(2)若公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),试写出W与某种产品的投资金额x(万元)之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
查看答案
如图,AB是⊙O的直径,BC是弦,∠ABC的平分线BD交⊙O于点D,DE⊥BC,交BC的延长线于点E,BD交AC于点F.
(1)求证:DE是⊙O的切线;
(2)若CE=1,ED=2,求⊙O的半径.
查看答案
甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是每分钟______米,乙在A地提速时距地面的高度b为______米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,乙追上了甲此时乙距A地的高度为多少米?
查看答案
如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号)
查看答案
某校初二年级全体320名学生在参加电脑培训前后各进行了一次水平相同的考试,考试都以同一标准划分成“不合格、合格、优秀”三个等级,为了了解培训的效果,用抽签的方式得到其中32名学生的两次考试等级,所绘的统计图如图所示,结合图示信息回答下列问题:
(1)这32名学生培训前考分的中位数所在的等级是______;
(2)这32名学生经过培训后,考分等级“不合格”的百分比是______;
(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有______名;
(4)你认为上述估计合理吗?理由是什么?
查看答案