满分5 > 初中数学试题 >

如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一...

如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.
(1)求证:AB为⊙O的切线;
(2)求弦AC的长;
(3)求图中阴影部分的面积.

manfen5.com 满分网
(1)如图,连接OA,欲证明AAB为⊙O的切线,只需证明AB⊥OA即可; (2)如图,连接AD,构建直角△ADC,利用“30度角所对的直角边是斜边的一半”求得AD=4,然后利用勾股定理来求弦AC的长度; (3)根据图示知,图中阴影部分的面积=扇形ADO的面积+△AOC的面积. (1)证明:如图,连接OA. ∵AB=AC,∠ABC=30°, ∴∠ABC=∠ACB=30°. ∴∠AOB=2∠ACB=60°, ∴在△ABO中,∠AOB=180°-∠ABO-∠AOB=90°,即AB⊥OA, 又∵OA是⊙O的半径, ∴AB为⊙O的切线; (2)【解析】 如图,连接AD. ∵CD是⊙O的直径, ∴∠DAC=90°. ∵由(1)知,∠ACB=30°, ∴AD=CD=4, 则根据勾股定理知AC==4,即弦AC的长是4; (3)【解析】 由(2)知,在△ADC中,∠DAC=90°,AD=4,AC=4,则S△ADC=AD•AC=×4×4=8. ∵点O是△ADC斜边上的中点, ∴S△AOC=S△ADC=4. 根据图示知,S阴影=S扇形ADO+S△AOC=+4=+4,即图中阴影部分的面积是+4.
复制答案
考点分析:
相关试题推荐
佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.
(1)求第一次水果的进价是每千克多少元?
(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?
查看答案
manfen5.com 满分网如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)
查看答案
如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.
(1)求证:△AOE≌△COF;
(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.

manfen5.com 满分网 查看答案
长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.
(1)写出所有的选购方案(用列表法或树状图);
(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?
查看答案
manfen5.com 满分网如图,已知一次函数y1=kx+b与反比例函数manfen5.com 满分网的图象交于A(2,4)、B(-4,n)两点.
(1)分别求出y1和y2的解析式;
(2)写出y1=y2时,x的值;
(3)写出y1>y2时,x的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.