满分5 > 初中数学试题 >

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经...

manfen5.com 满分网“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.
(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?
(1)根据原有的人数-a分钟检票额人数+a分钟增加的人数=520建立方程求出其解就可以; (2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由待定系数法求出函数的解析式,再将x=20代入解析式就可以求出结论; (3)设需同时开放n个检票口,根据原来的人数+15分进站人数≥n个检票口15分钟检票人数建立不等式,求出其解即可. 【解析】 (1)由图象知,640+16a-2×14a=520, ∴a=10;                                            (2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由题意,得 , 解得:, y=-26x+780,当x=20时, y=260, 即检票到第20分钟时,候车室排队等候检票的旅客有260人. (3)设需同时开放n个检票口,则由题意知 14n×15≥640+16×15 解得:n≥4, ∵n为整数, ∴n=5. 答:至少需要同时开放5个检票口.
复制答案
考点分析:
相关试题推荐
【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
manfen5.com 满分网
查看答案
据《2012年衢州市国民经济和社会发展统计公报》(2013年2月5日发布),衢州市固定资产投资的相关数据统计图如下:
manfen5.com 满分网
根据以上信息,解答下列问题:
(1)求2012年的固定资产投资增长速度(年增长速度即年增长率);
(2)求2005-2012年固定资产投资增长速度这组数据的中位数;
(3)求2006年的固定资产投资金额,并补全条形图;
(4)如果按照2012年的增长速度,请预测2013年衢州市的固定资产投资金额可达到多少亿元(精确到1亿元)?
查看答案
manfen5.com 满分网如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,求AD:OC的值.
查看答案
如图,函数y1=-x+4的图象与函数y2=manfen5.com 满分网(x>0)的图象交于A(a,1)、B(1,b)两点.
(1)求函数y2的表达式;
(2)观察图象,比较当x>0时,y1与y2的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.
(1)用a,b,x表示纸片剩余部分的面积;
(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.