连接FG,FD,GC,利用对角线互相平分的四边形是平行四边形判定四边形FGCD是平行四边形,然后根据平行四边形的对边平行且相等可得FG∥DC,FG=DC,又四边形ABCD也是平行四边形,所以AB∥DC,AB=DC,从而得到AB∥FG,AB=FG,然后得到四边形ABGF是平行四边形,根据平行四边形的对边平行即可得证.
证明:连接FG,FD,GC.
∵EG=ED,EF=EC,
∴四边形FGCD是平行四边形(对角线互相平分的四边形是平行四边形),
∴FG∥DC,FG=DC(平行四边形对边相等且平行),
∵平行四边形ABCD,
∴AB∥DC,AB=DC,
∴AB∥FG,AB=FG,
∴四边形ABGF是平行四边形(一组对边平行且相等的四边形是平行四边形),
∴AF∥BG.