满分5 > 初中数学试题 >

在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于...

manfen5.com 满分网在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.
(1)求y关于x的函数解析式,并写出x的取值范围;
(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;
(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.
(1)利用相似三角形△ABP∽△MQB,求出y关于x的函数解析式;注意求x的取值范围时,需考虑计算x最大值与最小值的情形; (2)如答图1所示,利用相外切两圆的性质,求出PQ的长;利用垂直平分线的性质PQ=BQ,列方程求出x的值; (3)如答图2所示,关键是证明△CEQ∽△ABP,据此列方程求出x的值. 【解析】 (1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25. ∵MQ是线段BP的垂直平分线, ∴BQ=PQ,BM=BP,∠BMQ=90°, ∴∠MBQ+∠BQM=90°, ∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM, 又∵∠A=∠BMQ=90°, ∴△ABP∽△MQB, ∴,即,化简得:y=BP2=(x2+25). 当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13-x)2,解得x=1; 又AP≤AD=13,∴x的取值范围为:1≤x≤13. ∴y=(x2+25)(1≤x≤13). (2)当⊙P与⊙Q相外切时,如答图1所示: 设切点为M,则PQ=PM+QM=AP+QC=AP+(BC-BQ)=x+(13-y)=13+x-y; ∵PQ=BQ, ∴13+x-y=y,即2y-x-13=0 将y=(x2+25)代入上式得:(x2+25)-x-13=0, 解此分式方程得:x=, 经检验,x=是原方程的解且符合题意. ∴x=. (3)按照题意画出图形,如答图2所示,连接QE. ∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质). ∵PQ=BQ,∴∠3=∠4, 而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3. 又∵矩形ABCD,∴AD∥BC,∴∠3=∠5, ∴∠1=∠5,又∵∠C=∠A=90°, ∴△CEQ∽△ABP, ∴,即,化简得:4x+5y=65, 将y=(x2+25)代入上式得:4x+(x2+25)=65, 解此分式方程得:x=, 经检验,x=是原方程的解且符合题意, ∴x=.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.
(1)求证:DE=EF;
(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.
查看答案
某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).
(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)
manfen5.com 满分网
查看答案
manfen5.com 满分网已知平面直角坐标系xOy(如图),直线manfen5.com 满分网经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.
(1)求b的值;
(2)如果反比例函数manfen5.com 满分网(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.
查看答案
解方程组:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.