满分5 > 初中数学试题 >

在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC...

在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.
(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.
①求证:BE=BF.
②请判断△AGC的形状,并说明理由;
(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)
manfen5.com 满分网
(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明; ②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可; (2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可. (1)证明:①∵四边形ABCD是平行四边形,∠ABC=90°, ∴四边形ABCD是矩形, ∴∠ABC=90°,AB∥DC,AD∥BC, ∴∠F=∠FDC,∠BEF=∠ADF, ∵DF是∠ADC的平分线, ∴∠ADF=∠FDC, ∴∠F=∠BEF, ∴BF=BE; ②△AGC是等腰直角三角形. 理由如下:连接BG, 由①知,BF=BE,∠FBC=90°, ∴∠F=∠BEF=45°, ∵G是EF的中点, ∴BG=FG,∠F=∠CBG=45°, ∵∠FAD=90°, ∴AF=AD, 又∵AD=BC, ∴AF=BC, 在△AFG和△CBG中,, ∴△AFG≌△CBG(SAS), ∴AG=CG, ∴∠FAG=∠BCG, 又∵∠FAG+∠GAC+∠ACB=90°, ∴∠BCG+∠GAC+∠ACB=90°, 即∠GAC+∠ACG=90°, ∴∠AGC=90°, ∴△AGC是等腰直角三角形; (2)连接BG,∵FB绕点F顺时针旋转60°至FG, ∴△BFG是等边三角形, ∴FG=BG,∠FBG=60°, 又∵四边形ABCD是平行四边形,∠ADC=60°, ∴∠ABC=∠ADC=60° ∴∠CBG=180°-∠FBG-∠ABC=180°-60°-60°=60°, ∴∠AFG=∠CBG, ∵DF是∠ADC的平分线, ∴∠ADF=∠FDC, ∵AB∥DC, ∴∠AFD=∠FDC, ∴∠AFD=∠ADF, ∴AF=AD, 在△AFG和△CBG中,, ∴△AFG≌△CBG(SAS), ∴AG=CG,∠FAG=∠BCG, 在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°-60°=120°, ∴∠AGC=180°-(∠GAC+∠ACG)=180°-120°=60°, ∴△AGC是等边三角形.
复制答案
考点分析:
相关试题推荐
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系式.根据题中所给信息解答以下问题:
(1)甲、乙两地之间的距离为______km;图中点C的实际意义为:______;慢车的速度为______,快车的速度为______
(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;
(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.

manfen5.com 满分网 查看答案
小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73供选用,结果保留整数)

manfen5.com 满分网 查看答案
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)
manfen5.com 满分网
查看答案
如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.
(1)请你用列表或树形图求出小明胜和小飞胜的概率;
(2)游戏公平吗?若不公平,请你设计一个公平的规则.

manfen5.com 满分网 查看答案
为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次抽测的男生有______人,抽测成绩的众数是______
(2)请你将图2的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.