满分5 > 初中数学试题 >

已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为...

已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.
(1)求△AED的周长;
(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△AED,当AD与BC重合时停止移动,设运动时间为t秒,△AED与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;
(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.
manfen5.com 满分网
(1)在Rt△ADE中,解直角三角形即可; (2)在△AED向右平移的过程中: (I)当0≤t≤1.5时,如答图1所示,此时重叠部分为一个三角形; (II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为一个四边形; (III)当4.5<t≤6时,如答图3所示,此时重叠部分为一个五边形. (3)根据旋转和等腰三角形的性质进行探究,结论是:存在α(30°和75°),使△BPQ为等腰三角形.如答图4、答图5所示. 【解析】 (1)∵四边形ABCD是平行四边形, ∴AD=BC=6. 在Rt△ADE中,AD=6,∠EAD=30°, ∴AE=AD•cos30°=3,DE=AD•sin30°=3, ∴△AED的周长为:6+3+3=9+3. (2)在△AED向右平移的过程中: (I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△DNK. ∵DD=2t,∴ND=DD•sin30°=t,NK=ND÷tan30°=t, ∴S=S△D0NK=ND•NK=t•t=t2; (II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形DEKN. ∵AA=2t,∴AB=AB-AA=12-2t, ∴AN=AB=6-t,NK=AN•tan30°=(6-t). ∴S=S四边形D0E0KN=S△A0D0E0-S△A0NK=×3×3-×(6-t)×(6-t)=t2+t-; (III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形DIJKN. ∵AA=2t,∴AB=AB-AA=12-2t=DC, ∴AN=AB=6-t,DN=6-(6-t)=t,BN=AB•cos30°=(6-t); 易知CI=BJ=AB=DC=12-2t,∴BI=BC-CI=2t-6, S=S梯形BND0I-S△BKJ=[t+(2t-6)]•(6-t)-•(12-2t)•(12-2t)=t2+t-. 综上所述,S与t之间的函数关系式为: S=. (3)存在α,使△BPQ为等腰三角形. 理由如下:经探究,得△BPQ∽△B1QC, 故当△BPQ为等腰三角形时,△B1QC也为等腰三角形. (I)当QB=QP时(如答图4), 则QB1=QC,∴∠B1CQ=∠B1=30°, 即∠BCB1=30°, ∴α=30°; (II)当BQ=BP时,则B1Q=B1C, 若点Q在线段B1E1的延长线上时(如答图5), ∵∠B1=30°,∴∠B1CQ=∠B1QC=75°, 即∠BCB1=75°, ∴α=75°; 若点Q在线段E1B1的延长线上时(如答图6), ∵∠B1=30°,∴∠B1CQ=∠B1QC=15°, 即∠BCB1=180°-∠B1CQ=180°-15°=165°, ∴α=165°. 综上所述,存在α=30°,75°或165°,使△BPQ为等腰三角形.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
查看答案
manfen5.com 满分网如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.
(1)求证:OE=OF;
(2)若BC=2manfen5.com 满分网,求AB的长.
查看答案
随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.
(1)求甲、乙两队单独完成这项工程各需几个月?
(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)
查看答案
减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图所示的统计图,由图中所给出的信息解答下列问题:
(1)求出x的值,并将不完整的条形统计图补充完整;
(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.
manfen5.com 满分网
查看答案
先化简,再求值:manfen5.com 满分网÷(manfen5.com 满分网-a-2b)-manfen5.com 满分网,其中a,b满足manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.