满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(-4,0...

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(-4,0).
(1)求经过点C的反比例函数的解析式;
(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.

manfen5.com 满分网
(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式; (2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标. 【解析】 (1)由题意知,OA=3,OB=4 在Rt△AOB中,AB= ∵四边形ABCD为菱形 ∴AD=BC=AB=5, ∴C(-4,-5). 设经过点C的反比例函数的解析式为(k≠0), 则=-5,解得k=20. 故所求的反比例函数的解析式为. (2)设P(x,y) ∵AD=AB=5,OA=3, ∴OD=2,S△COD= 即, ∴|x|=, ∴ 当x=时,y=,当x=-时,y=- ∴P()或().
复制答案
考点分析:
相关试题推荐
如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连结AA1,CC1.若△ABA1的面积为4,求△CBC1的面积.
manfen5.com 满分网
查看答案
为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
manfen5.com 满分网
请你根据统计图解答下列问题:
(1)在这次调查中一共抽查了______名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为______,喜欢“戏曲”活动项目的人数是______人;
(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.
查看答案
先化简分式(manfen5.com 满分网-manfen5.com 满分网)÷manfen5.com 满分网,再从不等式组manfen5.com 满分网的解集中取一个非负整数值代入,求原分式的值.
查看答案
如图,扇形MON的圆心角为直角,半径为2manfen5.com 满分网,正方形OABC内接于扇形,点A、C、B分别在OM、ON、manfen5.com 满分网上,过作ME⊥CB交CB的延长线于E,则图中阴影部分的面积为   
manfen5.com 满分网 查看答案
若b>0,二次函数y=ax2+bx+a2-1的图象如图,则a等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.