满分5 > 初中数学试题 >

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴...

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数manfen5.com 满分网(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数manfen5.com 满分网(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.

manfen5.com 满分网
(1)设直线DE的解析式为y=kx+b,直接把点D,E代入解析式利用待定系数法即可求得直线DE的解析式,先根据矩形的性质求得点M的纵坐标,再代入一次函数解析式求得其横坐标即可; (2)利用点M求得反比例函数的解析式,根据一次函数求得点N的坐标,再代入反比例函数的解析式判断是否成立即可; (3)满足条件的最内的双曲线的m=4,最外的双曲线的m=8,所以可得其取值范围. 【解析】 (1)设直线DE的解析式为y=kx+b, ∵点D,E的坐标为(0,3)、(6,0), ∴, 解得k=-,b=3; ∴; ∵点M在AB边上,B(4,2),而四边形OABC是矩形, ∴点M的纵坐标为2; 又∵点M在直线上, ∴2=; ∴x=2; ∴M(2,2); (2)∵(x>0)经过点M(2,2), ∴m=4; ∴; 又∵点N在BC边上,B(4,2), ∴点N的横坐标为4; ∵点N在直线上, ∴y=1; ∴N(4,1); ∵当x=4时,y==1, ∴点N在函数的图象上; (3)当反比例函数(x>0)的图象通过点M(2,2),N(4,1)时m的值最小,当反比例函数(x>0)的图象通过点B(4,2)时m的值最大, ∴2=,有m的值最小为4, 2=,有m的值最大为8, ∴4≤m≤8.
复制答案
考点分析:
相关试题推荐
如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图2).
(1)探究DB′与EC′的数量关系,并给予证明;
(2)当DB′∥AE时,试求旋转角α的度数.

manfen5.com 满分网 查看答案
“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
manfen5.com 满分网
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?
查看答案
小明和小华要到离学校15千米的图书馆看书.小明先骑自行车从学校出发,15分钟后,小华乘公交车从同一地点出发,结果两人同时到达图书馆.已知公交车的速度是自行车速度的1.5倍,求自行车的速度.
查看答案
(1)已知:如图1,在△ABC中,∠C=90°,点D、E分别在边 AB、AC上,DE∥BC,DE=3,BC=9,BD=10.求sinA的值.
(2)如图2,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.
manfen5.com 满分网
查看答案
(1)计算:manfen5.com 满分网
(2)化简:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.