满分5 >
初中数学试题 >
数据35,38,37,36,37,36,37,35的众数是( ) A.35 B....
数据35,38,37,36,37,36,37,35的众数是( )
A.35
B.36
C.37
D.38
考点分析:
相关试题推荐
给出四个数,
,其中为无理数的是( )
A.-1
B.0
C.0.5
D.
查看答案
如图,抛物线y=ax
2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,
)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.
(1)求抛物线的解析式;
(2)若直线l平分四边形OBDC的面积,求k的值;
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.
查看答案
为了改善市民的生活环境,我市在某河滨空地处修建一个如图所示的休闲文化广场,在Rt△ABC内修建矩形水池DEFG,使定点D,E在斜边AB上,F,G分别在直角边
BC,AC上;又分别以AB,BC,AC为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设瓷砖,其中AB=24
米,∠BAC=60°,设EF=x米,DE=y米.
(1)求y与x之间的函数解析式;
(2)当x为何值时,矩形DEFG的面积最大?最大面积是多少?
(3)求两弯新月(图中阴影部分)的面积,并求当x为何值时,矩形DEFG的面积及等于两弯新月面积的
?
查看答案
如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.
(1)当点D′恰好落在EF边上时,求旋转角a的值;
(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.
查看答案
随着我国汽车产业的发展,城市道路拥堵问题日益严峻,某部门对15个城市的交通状况进行了调查,得到的数据如下表所示.
城市 项目 | 北京 | 太原 | 杭州 | 沈阳 | 广州 | 深圳 | 上海 | 桂林 | 南通 | 海口 | 南京 | 温州 | 威海 | 兰州 | 中山 |
上班花费时间(分钟) | 52 | 33 | 34 | 34 | 48 | 46 | 47 | 23 | 24 | 24 | 37 | 25 | 24 | 25 | 18 |
上班堵车时间(分钟) | 14 | 12 | 12 | 12 | 12 | 11 | 11 | 7 | 7 | 6 | 6 | 5 | 5 | 5 | |
(1)根据上班花费时间,将下面的频数分布直方图补充完整;
(2)求15个城市的平均上班堵车时间(计算结果保留一位小数)
(3)规定:城市的堵车率=
×100%,比如,北京的堵车率=
;沈阳的堵车率=
,某人欲从北京,沈阳,上海,温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.
查看答案