满分5 > 初中数学试题 >

如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E...

manfen5.com 满分网如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.
(1)求证:点F是AD的中点;
(2)求cos∠AED的值;
(3)如果BD=10,求半径CD的长.
(1)由AD是△ABC的角平分线,∠B=∠CAE,易证得∠ADE=∠DAE,即可得ED=EA,又由ED是直径,根据直径所对的圆周角是直角,可得EF⊥AD,由三线合一的知识,即可判定点F是AD的中点; (2)首先连接DM,设EF=4k,df=3k,然后由勾股定理求得ED的长,继而求得DM与ME的长,由余弦的定义,即可求得答案; (3)易证得△AEC∽△BEA,然后由相似三角形的对应边成比例,可得方程:(5k)2=k•(10+5k),解此方程即可求得答案. (1)证明:∵AD是△ABC的角平分线, ∴∠1=∠2, ∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3, ∴∠ADE=∠DAE, ∴ED=EA, ∵ED为⊙O直径, ∴∠DFE=90°, ∴EF⊥AD, ∴点F是AD的中点; (2)【解析】 连接DM, 设EF=4k,df=3k, 则ED==5k, ∵AD•EF=AE•DM, ∴DM===k, ∴ME==k, ∴cos∠AED==; (3)【解析】 ∵∠B=∠3,∠AEC为公共角, ∴△AEC∽△BEA, ∴AE:BE=CE:AE, ∴AE2=CE•BE, ∴(5k)2=k•(10+5k), ∵k>0, ∴k=2, ∴CD=k=5.
复制答案
考点分析:
相关试题推荐
如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,
(1)manfen5.com 满分网的值为______

manfen5.com 满分网 查看答案
某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.
请你根据不完整的表格,回答下列问题:
成绩x(分)频数频率
50≤x<6010______
60≤x<70160.08
70≤x<80______0.2
80≤x<9062______
90≤x<100720.36
(1)补全频数分布直方图;
(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,平面直角坐标系中,直线manfen5.com 满分网与x轴交于点A,与双曲线manfen5.com 满分网在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.
查看答案
manfen5.com 满分网如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)
查看答案
某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.