满分5 > 初中数学试题 >

已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D. (Ⅰ)如图①,当直线I与⊙...

已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.
(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.
manfen5.com 满分网
(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°; (Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案. 【解析】 (Ⅰ)如图①,连接OC, ∵直线l与⊙O相切于点C, ∴OC⊥l, ∵AD⊥l, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OA=OC, ∴∠BAC=∠OCA, ∴∠BAC=∠DAC=30°; (Ⅱ)如图②,连接BF, ∵AB是⊙O的直径, ∴∠AFB=90°, ∴∠BAF=90°-∠B, ∴∠AEF=∠ADE+∠DAE=90°+18°=108°, 在⊙O中,四边形ABFE是圆的内接四边形, ∴∠AEF+∠B=180°, ∴∠B=180°-108°=72°, ∴∠BAF=90°-∠B=90°-72°=18°.
复制答案
考点分析:
相关试题推荐
四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
(Ⅰ)本次接受随机抽样调查的学生人数为______,图①中m的值是______
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
manfen5.com 满分网
查看答案
已知反比例函数y=manfen5.com 满分网(k为常数,k≠0)的图象经过点A(2,3).
(Ⅰ)求这个函数的解析式;
(Ⅱ)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(Ⅲ)当-3<x<-1时,求y的取值范围.
查看答案
解不等式组manfen5.com 满分网
查看答案
manfen5.com 满分网如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
(Ⅰ)△ABC的面积等于   
(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)    查看答案
manfen5.com 满分网如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.