连接AC、BD,根据等腰梯形的对角线相等可得AC=BD,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EF=GH=AC,HE=FG=BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形判定即可.
证明:如图,连接AC、BD,
∵AD∥BC,AB=CD,
∴AC=BD,
∵E、F、G、H分别为边AB、BC、CD、DA的中点,
∴在△ABC中,EF=AC,
在△ADC中,GH=AC,
∴EF=GH=AC,
同理可得,HE=FG=BD,
∴EF=FG=GH=HE,
∴四边形EFGH为菱形.