满分5 > 初中数学试题 >

某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商...

某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?
(1)设甲商品的进价为x元,乙商品的进价为y元,就有x=y,3x+y=200,由这两个方程构成方程组求出其解既可以; (2)设购进甲种商品m件,则购进乙种商品(100-m)件,根据不少于6710元且不超过6810元购进这两种商品100的货款建立不等式,求出其值就可以得出进货 方案,设利润为W元,根据利润=售价-进价建立解析式就可以求出结论. 【解析】 设甲商品的进价为x元,乙商品的进价为y元,由题意,得 , 解得:. 答:商品的进价为40元,乙商品的进价为80元; (2)设购进甲种商品m件,则购进乙种商品(100-m)件,由题意,得 , 解得:29≤m≤32 ∵m为整数, ∴m=30,31,32, 故有三种进货方案: 方案1,甲种商品30件,乙商品70件, 方案2,甲种商品31件,乙商品69件, 方案3,甲种商品32件,乙商品68件, 设利润为W元,由题意,得 W=40m+50(100-m), =-10m+5000 ∵k=-10<0, ∴W随m的增大而减小, ∴m=30时,W最大=4700.
复制答案
考点分析:
相关试题推荐
“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:manfen5.com 满分网manfen5.com 满分网).
manfen5.com 满分网
查看答案
manfen5.com 满分网如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.
(1)求点C的坐标及反比例函数的解析式.
(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.
查看答案
一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为manfen5.com 满分网
(1)求袋子里2号球的个数.
(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.
查看答案
manfen5.com 满分网如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.
查看答案
先简化,再求值:manfen5.com 满分网,其中x=manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.