阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r
1,r
2,腰上的高为h,连接AP,则S
△ABP+S
△ACP=S
△ABC,即:
AB•r
1+
AC•r
2=
AB•h,∴r
1+r
2=h
(1)理解与应用
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在 三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r
1,r
2,r
3,试证明:
.
(2)类比与推理
边长为2的正方形内任意一点到各边的距离的和等于______;
(3)拓展与延伸
若边长为2的正n边形A
1A
2…An内部任意一点P到各边的距离为r
1,r
2,…r
n,请问r
1+r
2+…r
n是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值.
考点分析:
相关试题推荐
某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)×销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) | ______ | ______ | ______ |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
查看答案
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=
AB.
查看答案
为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)求表示户外活动时间1小时的扇形圆心角的度数;
(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?
查看答案
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC.
(1)利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直平分线,交AB于点E,最后连接EF.
(2)若线段BD的长为6,求线段EF的长.
查看答案