满分5 > 初中数学试题 >

如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个...

如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.
(1)当ι=______时,点P与点Q相遇;
(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?
(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.
①求s与ι之间的函数关系式;
②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.

manfen5.com 满分网
(1)首先利用勾股定理求得AC的长度,点P与点Q相遇一定是在P由A到B的过程中,利用方程即可求得; (2)分Q从C到A的时间是3秒,P从B到C的时间是3秒,则可以分当0≤t≤2时,若△PCQ为等腰三角形,则一定有:PC=CQ,和当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=PC两种情况进行讨论求得t的值; (3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC的长度是t-3,然后利用相似三角形的性质即可利用t表示出s的值,然后利用二次函数的性质即可求得t的值,从而求解. 【解析】 (1)在直角△ABC中,AC==4, 则Q从C到B经过的路程是9,需要的时间是4.5秒.此时P运动的路程是4.5,P和Q之间的距离是:3+4+5-4.5=7.5. 根据题意得:(t-4.5)+2(t-4.5)=7.5,解得:t=7. (2)Q从C到A的时间是2秒,P从B到C的时间是3秒. 则当0≤t≤2时,若△PCQ为等腰三角形,则一定有:PC=CQ,即3-t=2t,解得:t=1. 当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=QC(如图1).则Q在PC的中垂线上,作QH⊥AC,则QH=PC.△AQH∽△ABC, 在直角△AQH中,AQ=2t-4,则QH=AQ=. ∵PC=BC-BP=3-t, ∴(2t-4)=(3-t), 解得:t=; (3)连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F, 则△PCO即为折叠后的△APD与△PCQ重叠部分的面积. 在点Q从点B返回点A的运动过程中,P一定在AC上,则PC=t-3,BQ=2t-9,即AQ=5-(2t-9)=14-2t. 同(2)可得:△PCQ中,PC边上的高是:(14-2t), 故s=(t-3)×(14-2t)=(-t2+10t-21). 故当t=5时,s有最大值,此时,P在AC的中点.(如图2). ∵沿直线PD折叠,使点A落在直线PC上, ∴PD一定是AC的中垂线. 则AP=AC=2,PD=BC=, AQ=14-2t=14-2×5=4. 则PC边上的高是:AQ=×4=. ∵∠COF=∠CDP=∠B, 所以,tan∠COF=,设OF为x, 则利用三角函数得CF=,PF=2-, 则QE=,AE=, ∴PE=, ∵△POF∽△PQE, ∴=, 解得:x=, S△PCO=×2×=.
复制答案
考点分析:
相关试题推荐
甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,AB是⊙0的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.
(1)猜想直线MN与⊙0的位置关系,并说明理由;
(2)若CD=6,cos∠ACD=manfen5.com 满分网,求⊙0的半径.
查看答案
小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
查看答案
一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.
(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是______
(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)
查看答案
manfen5.com 满分网如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:
球类名称乒乓球排球羽毛球足球篮球
人数a123618b
解答下列问题:
(1)本次调查中的样本容量是______
(2)a=______,b=______
(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.