满分5 > 初中数学试题 >

已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0). (1)...

已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于点D.
①当△ABC的面积等于1时,求a的值;
②当△ABC的面积与△ABD的面积相等时,求m的值.
(1)把(x-m)看作一个整体,令y=0,利用根的判别式进行判断即可; (2)①令y=0,利用因式分解法解方程求出点A、B的坐标,然后求出AB,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解; ②令x=0求出点D的坐标,然后利用三角形的面积列式计算即可得解. (1)证明:令y=0,a(x-m)2-a(x-m)=0, △=(-a)2-4a×0=a2, ∵a≠0, ∴a2>0, ∴不论a与m为何值,该函数的图象与x轴总有两个公共点; (2)【解析】 ①y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0, 解得x1=m,x2=m+1, ∴AB=(m+1)-m=1, y=a(x-m)2-a(x-m)=a(x-m-)2-, △ABC的面积=×1×||=1, 解得a=±8; ②x=0时,y=a(0-m)2-a(0-m)=am2+am, 所以,点D的坐标为(0,am2+am), △ABD的面积=×1×|am2+am|, ∵△ABC的面积与△ABD的面积相等, ∴×1×|am2+am|=×1×||, 整理得,m2+m-=0或m2+m+=0, 解得m=或m=-.
复制答案
考点分析:
相关试题推荐
如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若AB=9,BC=6.求PC的长.

manfen5.com 满分网 查看答案
小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.
(1)小丽驾车的最高速度是______km/h;
(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;
(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?
manfen5.com 满分网
查看答案
某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.
消费金额(元)300-400400-500500-600600-700700-900
返还金额(元)3060100130150
根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若够买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).
(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?
(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标记至少为多少元?
查看答案
已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)
manfen5.com 满分网
查看答案
某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到下列图表:
manfen5.com 满分网
(1)理解划线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;
(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图;
manfen5.com 满分网
(3)该校数学兴趣小组结合调查获取信息,向学校提出了一些建议,如:骑车上学的学生约占全校的34%,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化的建议:______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.