满分5 > 初中数学试题 >

在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且...

在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.
(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.
manfen5.com 满分网
(1)如答图1,连接CD,证明△AND≌△CDM,可得DM=DN;证明△NED≌△DFM,可得DF=NE,从而得到AE=NE=DF; (2)①若D为AB中点,则分别证明△DEN∽△MFD,△AEN∽△MFB,由线段比例关系可以证明AE=DF结论依然成立.证法二提供另外一种证明方法,可以参考; ②若BD=kAD,证明思路与①类似;证法二提供另外一种证明方法,可以参考. (1)证明:若AC=BC,则△ABC为等腰直角三角形, 如答图1所示,连接CD,则CD⊥AB,又∵DM⊥DN,∴∠1=∠2. 在△AND与△CDM中, ∴△AND≌△CDM(ASA), ∴DM=DN. ∵∠4+∠1=90°,∠1+∠3=90°,∴∠4=∠3, ∵∠1+∠3=90°,∠3+∠5=90°,∴∠1=∠5, 在△NED与△DFM中, ∴△NED≌△DFM(ASA), ∴NE=DF. ∵△ANE为等腰直角三角形,∴AE=NE,∴AE=DF. (2)①答:AE=DF. 证法一:由(1)证明可知:△DEN∽△MFD, ∴,即MF•EN=DE•DF. 同理△AEN∽△MFB, ∴,即MF•EN=AE•BF. ∴DE•DF=AE•BF, ∴(AD-AE)•DF=AE•(BD-DF), ∴AD•DF=AE•BD,∴AE=DF. 证法二:如答图2所示,过点D作DP⊥BC于点P,DQ⊥AC于点Q. ∵D为AB中点, ∴DQ=PC=PB. 易证△DMF∽△NDE,∴, 易证△DMP∽△DNQ,∴, ∴; 易证△AEN∽△DPB,∴, ∴,∴AE=DF. ②答:DF=kAE. 证法一:由①同理可得:DE•DF=AE•BF, ∴(AE-AD)•DF=AE•(DF-BD) ∴AD•DF=AE•BD ∵BD=kAD ∴DF=kAE. 证法二:如答图3,过点D作DP⊥BC于点P,DQ⊥AC于点Q. 易证△AQD∽△DPB,得,即PB=kDQ. 由①同理可得:, ∴; 又∵, ∴, ∴DF=kAE.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(-3,0)和点B(1,0).与y轴交于点C,顶点为D.
(1)求顶点D的坐标.(用含a的代数式表示);
(2)若△ACD的面积为3.
①求抛物线的解析式;
②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.

manfen5.com 满分网 查看答案
如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2
(1)求S与x的函数关系式;
(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,直线l:y=x+1与x轴、y轴分别交于A、B两点,点C与原点O关于直线l对称.反比例函数y=manfen5.com 满分网的图象经过点C,点P在反比例函数图象上且位于C点左侧,过点P作x轴、y轴的垂线分别交直线l于M、N两点.
(1)求反比例函数的解析式;
(2)求AN•BM的值.
查看答案
manfen5.com 满分网如图,▱ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE、AC、AE.
(1)求证:△AED≌△DCA;
(2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积.
查看答案
manfen5.com 满分网定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.
如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.