满分5 > 初中数学试题 >

某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙...

某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍.现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆.
(1)商店有哪几种购车方案?
(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?
(1)设商店购进乙型车x辆.则甲型是:辆.根据所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍,即可得到关于x的不等式组,从而求得x的范围,然后根据甲、乙的辆数都是正整数,即可确定x的值,从而确定方案; (2)根据总获利=甲型的获利+乙型的获利,即可得到函数解析式,然后利用函数的性质即可确定商店购进乙型车多少辆时所获得的利润最大. 【解析】 (1)设商店购进乙型车x辆.则甲型是:辆. 根据题意得:, 解得:13≤x≤, ∵x是正整数,是正整数. ∴x=13或14或15或16. 则有4种方案:方案一:乙13辆,甲39辆; 方案二:乙14辆,甲37辆; 方案三:乙15辆,甲35辆; 方案四:乙16辆,甲33辆. (2)y=70×+50x, 即y=-90x+4550. ∵-90<0,则y随x的增大而减小, ∴当x=13时,y最大. 答:当乙型车购进13辆时所获得的利润最大.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm.
(1)求证:BF是⊙O的切线.
(2)若AD=8cm,求BE的长.
(3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由.
查看答案
如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?
(参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.

manfen5.com 满分网 查看答案
解不等式组manfen5.com 满分网,并把解集在数轴上表示出来.
查看答案
求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.