满分5 > 初中数学试题 >

已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=...

已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中结论正确的个数是( )
manfen5.com 满分网
A.1
B.2
C.3
D.4
①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形AEC全等,由全等三角形的对应边相等得到BD=CE,本选项正确; ②由三角形ABD与三角形AEC全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE,本选项正确; ③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°,本选项正确; ④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断. 【解析】 ①∵∠BAC=∠DAE=90°, ∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE, ∵在△BAD和△CAE中, , ∴△BAD≌△CAE(SAS), ∴BD=CE,本选项正确; ②∵△BAD≌△CAE, ∴∠ABD=∠ACE, ∵∠ABD+∠DBC=45°, ∴∠ACE+∠DBC=45°, ∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°, 则BD⊥CE,本选项正确; ③∵△ABC为等腰直角三角形, ∴∠ABC=∠ACB=45°, ∴∠ABD+∠DBC=45°, ∵∠ABD=∠ACE ∴∠ACE+∠DBC=45°,本选项正确; ④∵BD⊥CE, ∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2, ∵△ADE为等腰直角三角形, ∴DE=AD,即DE2=2AD2, ∴BE2=BD2+DE2=BD2+2AD2, 而BD2≠2AB2,本选项错误, 综上,正确的个数为3个. 故选C
复制答案
考点分析:
相关试题推荐
如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
manfen5.com 满分网
A.4
B.5
C.6
D.7
查看答案
如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:
金额(元)20303550100
学生数(人)51051510
在这次活动中,该班同学捐款金额的众数和中位数分别是( )
A.30,35
B.50,35
C.50,50
D.15,50
查看答案
对于反比例函数y=manfen5.com 满分网,下列说法正确的是( )
A.图象经过点(1,-3)
B.图象在第二、四象限
C.x>0时,y随x的增大而增大
D.x<0时,y随x增大而减小
查看答案
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则manfen5.com 满分网的值为( )
manfen5.com 满分网
A.1
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.