满分5 > 初中数学试题 >

已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,...

已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.
manfen5.com 满分网
(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可; 证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可, (2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线; 解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可; (3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME; 证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可. (1)证法一: 如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形, ∴AB=BC=BD, ∴点B为线段AD的中点, 又∵点M为线段AF的中点, ∴BM为△ADF的中位线, ∴BM∥CF. 证法二: 如答图1b,延长BM交EF于D, ∵∠ABC=∠CEF=90°, ∴AB⊥CE,EF⊥CE, ∴AB∥EF, ∴∠BAM=∠DFM, ∵M是AF的中点, ∴AM=MF, ∵在△ABM和△FDM中, , ∴△ABM≌△FDM(ASA), ∴AB=DF, ∵BE=CE-BC,DE=EF-DF, ∴BE=DE, ∴△BDE是等腰直角三角形, ∴∠EBM=45°, ∵在等腰直角△CEF中,∠ECF=45°, ∴∠EBM=∠ECF, ∴MB∥CF; (2)解法一: 如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形, ∴AB=BC=BD=a,AC=AD=a, ∴点B为AD中点,又点M为AF中点, ∴BM=DF. 分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形, ∴CE=EF=GE=2a,CG=CF=a, ∴点E为FG中点,又点M为AF中点, ∴ME=AG. ∵CG=CF=a,CA=CD=a, ∴AG=DF=a, ∴BM=ME=×a=a. 解法二: ∵CB=a,CE=2a, ∴BE=CE-CB=2a-a=a, ∵△ABM≌△FEM, ∴BM=DM, 又∵△BED是等腰直角三角形, ∴△BEM是等腰直角三角形, ∴BM=ME=BE=a; (3)证法一: 如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形, ∴AB=BC=BD,AC=CD, ∴点B为AD中点,又点M为AF中点,∴BM=DF. 延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形, ∴CE=EF=EG,CF=CG, ∴点E为FG中点,又点M为AF中点,∴ME=AG. 在△ACG与△DCF中, , ∴△ACG≌△DCF(SAS), ∴DF=AG, ∴BM=ME. 证法二: 如答图3b,延长BM交CF于D,连接BE、DE, ∵∠BCE=45°, ∴∠ACD=45°×2+45°=135° ∴∠BAC+∠ACF=45°+135°=180°, ∴AB∥CF, ∴∠BAM=∠DFM, ∴M是AF的中点, ∴AM=FM, 在△ABM和△FDM中,, ∴△ABM≌△FDM(ASA), ∴AB=DF,BM=DM, ∴AB=BC=DF, ∵在△BCE和△DFE中, , ∴△BCE≌△DFE(SAS), ∴BE=DE,∠BEC=∠DEF, ∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°, ∴△BDE是等腰直角三角形, 又∵BM=DM, ∴BM=ME=BD, 故BM=ME.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知二次函数的图象过点A(0,-3),B(manfen5.com 满分网manfen5.com 满分网),对称轴为直线x=-manfen5.com 满分网,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=manfen5.com 满分网MP,MD=manfen5.com 满分网OM,OE=manfen5.com 满分网ON,NF=manfen5.com 满分网NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,已知⊙O是等腰直角三角形ADE的外接圆,∠ADE=90°,延长ED到C使DC=AD,以AD,DC为邻边作正方形ABCD,连接AC,连接BE交AC于点H.求证:
(1)AC是⊙O的切线.
(2)HC=2AH.
查看答案
网络购物发展十分迅速,某企业有4000名职工,从中随机抽取350人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图1和扇形图2.
(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?
(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?
(3)这次调查中,“25-35”岁年龄段的职工“从不(网购)”的有22人,它占“25-35”岁年龄段接受调查人数的百分之几?
(4)请估计该企业“从不(网购)”的人数是多少?
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=manfen5.com 满分网,AD=1.
(1)求BC的长;
(2)求tan∠DAE的值.
查看答案
某地为改善生态环境,积极开展植树造林,甲、乙两人从近几年的统计数据中有如下发现:
manfen5.com 满分网
(1)求y2与x之间的函数关系式?
(2)若上述关系不变,试计算哪一年该地公益林面积可达防护林面积的2倍?这时该地公益林的面积为多少万亩?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.