满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0.8...

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.
(1)当0<m<8时,求CE的长(用含m的代数式表示);
(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.

manfen5.com 满分网
(1)首先证明△BCE∽△BAO,根据相似三角形的对应边的比相等即可求得; (2)证明△EDA∽△BOA,根据相似三角形的对应边的比相等即可求得; (3)分m>0,m=0和m<0三种情况进行讨论,当m=0时,一定成立,当m>0时,分0<m<8和m>8两种情况,利用三角函数的定义即可求解.当m<0时,分点E与点A重合和点E与点A不重合时,两种情况进行讨论. 【解析】 (1)∵A(6,0),B(0,8). ∴OA=6,OB=8. ∴AB=10, ∵∠CEB=∠AOB=90°, 又∵∠OBA=∠EBC, ∴△BCE∽△BAO, ∴=,即=, ∴CE=-m; (2)∵m=3, ∴BC=8-m=5,CE=-m=3. ∴BE=4, ∴AE=AB-BE=6. ∵点F落在y轴上(如图2). ∴DE∥BO, ∴△EDA∽△BOA, ∴=即=. ∴OD=, ∴点D的坐标为(,0). (3)取CE的中点P,过P作PG⊥y轴于点G. 则CP=CE=-m. (Ⅰ)当m>0时, ①当0<m<8时,如图3.易证∠GCP=∠BAO, ∴cos∠GCP=cos∠BAO=, ∴CG=CP•cos∠GCP=(-m)=-m. ∴OG=OC+CG=m+-m=m+. 根据题意得,得:OG=CP, ∴m+=-m, 解得:m=; ②当m≥8时,OG>CP,显然不存在满足条件的m的值. (Ⅱ)当m=0时,即点C与原点O重合(如图4). (Ⅲ)当m<0时, ①当点E与点A重合时,(如图5), 易证△COA∽△AOB, ∴=,即=, 解得:m=-. ②当点E与点A不重合时,(如图6). OG=OC-CG=-m-(-m) =-m-. 由题意得:OG=CP, ∴-m-=-m. 解得m=-. 综上所述,m的值是或0或-或-.
复制答案
考点分析:
相关试题推荐
某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)
  七巧板拼图 趣题巧解 数学应用 魔方复原
 甲 66 89 86 68
 乙 66 60 80 68
 丙 66 80 90 68
(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;
(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?
查看答案
manfen5.com 满分网如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长.
查看答案
一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于manfen5.com 满分网,问至少取出了多少个黑球?
查看答案
如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(-1,0)
(1)求该抛物线的解析式;
(2)求梯形COBD的面积.

manfen5.com 满分网 查看答案
如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.
(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;
(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.