满分5 > 初中数学试题 >

如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接A...

如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.
(1)求证:AD是⊙O的切线;
(2)如果⊙O的半径是6cm,EC=8cm,求GF的长.

manfen5.com 满分网
(1)连接OC.欲证AD是⊙O的切线,只需证明OA⊥AD即可; (2)连接BG.在Rt△CEO中利用勾股定理求得OE=10,从而求得AE=13;然后由相似三角形Rt△AEF∽Rt△OEC的对应边成比例求得AF=9.6,再利用圆周角定理证得Rt△ABG∽Rt△AEF,根据相似三角形的对应边成比例求得AG=7.2,所以GF=AF-AG=9.6-7.2=2.4. (1)证明:连接OC. ∵CD是⊙O的切线, ∴∠OCD=90°. ∴∠OCA+∠ACD=90°. ∵OA=OC, ∴∠OCA=∠OAC. ∵∠DAC=∠ACD,∠OCA+∠DAC=90° ∴∠0AC+∠CAD=90°. ∴∠OAD=90°. ∴AD是⊙O的切线. (2)【解析】 连接BG; ∵OC=6cm,EC=8cm, ∴在Rt△CEO中,OE==10. ∴AE=OE+OA=16. ∵AF⊥ED, ∴∠AFE=∠OCE=90°,∠E=∠E. ∴Rt△AEF∽Rt△OEC. ∴=. 即:=. ∴AF=9.6. ∵AB是⊙O的直径, ∴∠AGB=90°. ∴∠AGB=∠AFE. ∵∠BAG=∠EAF, ∴Rt△ABG∽Rt△AEF. ∴=. 即:=. ∴AG=7.2. ∴GF=AF-AG=9.6-7.2=2.4(cm).
复制答案
考点分析:
相关试题推荐
城市规划期间,欲拆除一电线杆AB(如图),已知距电线杆AB水平距离14m的D处有一大坝,背水坝CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)(manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
某工程队承包了某段过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组平均每天各掘进多少米?
查看答案
如图,A信封中装有两张卡片,卡片上分别写着7cm,3cm;B信封中装有三张卡片,卡片上分别写着2cm,4cm,6cm;信封外有一张写着5cm的卡片,所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上表面的数量分别作三条线段的长度.
(1)求这三条线段能组成三角形的概率(画出树状图);
(2)求这三条线段能组成直角三角形的概率.

manfen5.com 满分网 查看答案
已知:如图,在等腰梯形ABCD中,AB∥CD,点E、F分别在AD、BC上,且DE=CF.
求证:AF=BE.

manfen5.com 满分网 查看答案
解分式方程manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.