满分5 > 初中数学试题 >

已知:如图,直线y=mx+n与抛物线交于点A(1,0)和点B,与抛物线的对称轴x...

已知:如图,直线y=mx+n与抛物线manfen5.com 满分网交于点A(1,0)和点B,与抛物线的对称轴x=-2交于点C(-2,4),直线f过抛物线与x轴的另一个交点D且与x轴垂直.
(1)求直线y=mx+n和抛物线manfen5.com 满分网的解析式;
(2)在直线f上是否存在点P,使⊙P与直线y=mx+n和直线x=-2都相切.若存在,求出圆心P的坐标,若不存在,请说明理由;
(3)在线段AB上有一个动点M(不与点A、B重合),过点M作x轴的垂线交抛物线于点N,当MN的长为多少时,△ABN的面积最大,请求出这个最大面积.

manfen5.com 满分网
(1)利用待定系数法可以求出直线y=mx+n的解析式;在解二次函数的解析式时,可由其对称轴方程求出b的值,再代入A点的坐标可以求出c的值. (2)此题需要从图形入手,显然在直线AB的上下方各有一个符合条件的P点,那么可以将图形进行简化(如解答部分的图示),在简化的图形中,△P1E1F≌△PEF且△PEF∽△ADF;圆的半径可由直线f和直线x=-2的距离得出(即PE、P1E1的长),AD、FD的长不难得到,那么由相似三角形即可求出PF的长,进而能求出PD、P1D的长,由此求出圆心的坐标. (3)点B的坐标不难求出,根据直线AB和抛物线的解析式,可以先用一个未知数表达出点M、N的坐标,以MN为底,A、B点的横坐标差的绝对值为高(也可将△ABN分成两个三角形来分析),即可得到关于△ABN的面积和未知数的函数解析式,根据函数的性质求解即可. 【解析】 (1)将A(1,0)、C(-2,4)代入直线y=mx+n得: , 解得:, 故直线解析式为:. 将A(1,0)代入抛物线及对称轴为直线x=-2得: , 解得:, 故抛物线解析式为:. (2)存在. 如图1,图形简化为图2 直线f解析式:x=-5,故圆半径R=3,且F(-5,8). 易得△PEF∽△ADF,△P1E1F≌△PEF,其中PE=P1E1=R=3,AD=6,FD=8,P1F=PF. 在Rt△ADF中,由勾股定理得:AF=10,由得:PF=5. ∴PD=13,P1D=3. ∴P(-5,13)、P1(-5,3). 综上可得存在点P的坐标为(-5,13)或(-5,3). (3)如图3: 联立直线与抛物线解析式得:, 解得交点B的坐标:(-9,). 设点M(q,-q+),N(q,q2+q-), 所以:MN=(-q+)-(q2+q-)=-q2-q+3=-(q+4)2+. S△ABN=S△AMN+S△BMN=MN•AF+MN•BE=MN(AF+BE)=5MN=-(q+4)2+. 当q=-4时,S△ABN有最大值;此时:MN=.
复制答案
考点分析:
相关试题推荐
如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.

manfen5.com 满分网 查看答案
我市新都生活超市准备一次性购进A、B两种品牌的饮料100箱,此两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.
品牌AB
进价(元/箱)6549
售价(元/箱)8062
(1)求y关于x的函数关系式;
(2)由于资金周转原因,用于超市购进A、B两种饮料的总费用不超过5600元,并要求获得利润不低于1380元,则从两种饮料箱数上考虑,共有哪几种进货方案?(利润=售价-进价)
查看答案
已知一次函数y1=x+m的图象与反比例函数manfen5.com 满分网的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2
(1)求一次函数的解析式;
(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.

manfen5.com 满分网 查看答案
某种子培育基地用A、B、C、D四种型号的小麦种子共2000粒进行发芽实验,将从中选出发芽率高的种子进行推广.通过实验可知,C型号种子的发芽率为95%,根据实验数据绘制了如下两幅尚不完整的统计图.
manfen5.com 满分网
(1)根据图甲求用于实验的D型号种子的粒数,并将图乙的统计图补充完整.
(2)通过计算,回答应选哪一个型号的种子进行推广.
查看答案
如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.