满分5 > 初中数学试题 >

某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电...

某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.
(1)求购买1块电子白板和一台笔记本电脑各需多少元?
(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?
(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?
(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案; (2)设购买电子白板a块,则购买笔记本电脑(396-a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可; (3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用. 【解析】 (1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得: , 解得:. 答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元. (2)设购买电子白板a块,则购买笔记本电脑(396-a)台,由题意得: , 解得:99≤a≤101, ∵a为正整数, ∴a=99,100,101,则电脑依次买:297台,296台,295台. 因此该校有三种购买方案: 方案一:购买笔记本电脑295台,则购买电子白板101块; 方案二:购买笔记本电脑296台,则购买电子白板100块; 方案三:购买笔记本电脑297台,则购买电子白板99块; (3)解法一: 购买笔记本电脑和电子白板的总费用为: 方案一:295×4000+101×15000=2695000(元) 方案二:296×4000+100×15000=2684000(元) 方案三:297×4000+99×15000=2673000(元) 因此,方案三最省钱,按这种方案共需费用2673000元. 解法二: 设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元, 则W=4000z+15000(396-z)=-11000z+5940000, ∵k=-11000<0, ∴W随z的增大而减小, ∴当z=297时,W有最小值=2673000(元) 因此,当购买笔记本电脑297台、购买电子白板99块时,最省钱,这时共需费用2673000元.
复制答案
考点分析:
相关试题推荐
如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.
(1)求证:△ACE≌△BCD;
(2)直线AE与BD互相垂直吗?请证明你的结论.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
对于正数x,规定 manfen5.com 满分网,例如:manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网=    查看答案
在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为manfen5.com 满分网,则放入的黄球总数n=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.