满分5 > 初中数学试题 >

设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全...

设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.
(1)反比例函数y=manfen5.com 满分网是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由;
(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;
(3)若二次函数y=manfen5.com 满分网x2-manfen5.com 满分网x-manfen5.com 满分网是闭区间[a,b]上的“闭函数”,求实数a,b的值.
(1)根据反比例函数y=的单调区间进行判断; (2)根据新定义运算法则列出关于系数k、b的方程组或,通过解该方程组即可求得系数k、b的值; (3)y=x2-x-=(x-2)2-,所以该二次函数的图象开口方向向上,最小值是-,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大;根据新定义运算法则列出关于系数a、b的方程组或,通过解方程组即可求得a、b的值. 【解析】 (1)反比例函数y=是闭区间[1,2013]上的“闭函数”.理由如下: 反比例函数y=在第一象限,y随x的增大而减小, 当x=1时,y=2013; 当x=2013时,y=1, 所以,当1≤x≤2013时,有1≤y≤2013,符合闭函数的定义,故 反比例函数y=是闭区间[1,2013]上的“闭函数”; (2)分两种情况:k>0或k<0. ①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知, , 解得. ∴此函数的解析式是y=x; ②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知, , 解得. ∴此函数的解析式是y=-x+m+n; (3)∵y=x2-x-=(x-2)2-, ∴该二次函数的图象开口方向向上,最小值是-,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大; ①当b≤2时,此二次函数y随x的增大而减小,则根据“闭函数”的定义知,, 解得,(不合题意,舍去)或; ②当a<2<b时,此时二次函数y=x2-x-的最小值是-=a,根据“闭函数”的定义知,b=a2-a-、b=b2-b-; a)当b=a2-a-时,由于b=(-)2-×(-)-=<2,不合题意,舍去; b)当b=b2-b-时,解得b=, 由于b>2, 所以b=; ③当a≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,, 解得,, ∵<0, ∴舍去. 综上所述,或.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
(1)求证:△ABN≌△CDM;
(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.
查看答案
为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.
(1)求1号线,2号线每千米的平均造价分别是多少亿元?
(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?
查看答案
manfen5.com 满分网如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.
查看答案
“宜居长沙”是我们的共同愿景,空气质量倍受人们的关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图,请根据图中信息,解答下列问题:
manfen5.com 满分网
(1)统计图共统计了______天空气质量情况.
(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形圆心角度数.
(3)从小源所在班级的40名同学中,随机选取一名同学去该空气质量监测点参观,则恰好选到小源的概率是多少?
查看答案
manfen5.com 满分网解不等式组manfen5.com 满分网并将其解集在数轴上表示出来.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.