首先建立平面直角坐标系,设AB与y轴交于H,求出OC的长,然后设设该抛物线的解析式为:y=ax2+k,根据题干条件求出a和k的值,再令y=0,求出x的值,即可求出D和E点的坐标,DE的长度即可求出.
【解析】
如图所示,建立平面直角坐标系.
设AB与y轴交于点H,
∵AB=36,
∴AH=BH=18,
由题可知:
OH=7,CH=9,
∴OC=9+7=16,
设该抛物线的解析式为:y=ax2+k,
∵顶点C(0,16),
∴抛物线y=ax2+16,
代入点(18,7)
∴7=18×18a+16,
∴7=324a+16,
∴324a=-9,
∴a=-,
∴抛物线:y=-x2+16,
当y=0时,0=-x2+16,
∴-x2=-16,
∴x2=16×36=576
∴x=±24,
∴E(24,0),D(-24,0),
∴OE=OD=24,
∴DE=OD+OE=24+24=48,
故答案为48.