满分5 > 初中数学试题 >

点D是⊙O的直径CA延长线上一点,点B在⊙O上,∠DBA=∠C. (1)请判断B...

点D是⊙O的直径CA延长线上一点,点B在⊙O上,∠DBA=∠C.
(1)请判断BD所在的直线与⊙O的位置关系,并说明理由;
(2)若AD=AO=1,求图中阴影部分的面积(结果保留根号).

manfen5.com 满分网
(1)BD所在的直线与圆O相切,理由为:连接OB,由CA为圆O的直径,利用直角所对的圆周角为直角,得到∠ABC=90°,再由OB=OC,利用等边对等角得到一对角相等,再由∠DBA=∠C,得到∠DBA+∠OBA=∠OBC+∠OBA=∠ABC=90°,即BD垂直于半径OB,可得出BD所在的直线为圆O的切线; (2)由BD为圆O的切线,得到三角形BDO为直角三角形,根据OB及OD的长,利用勾股定理求出BD的长,进而由直角边BD与BO乘积的一半求出直角三角形BDO的面积,再由BO为DO的一半求出∠D=30°,进而得出∠AOB=60°,利用扇形的面积公式求出扇形AOB的面积,由直角三角形BDO的面积-扇形AOB的面积,即可求出阴影部分的面积. (1)BD所在的直线与⊙O相切,理由如下: 证明:连接OB, ∵CA是⊙O的直径, ∴∠ABC=90°, ∵OB=OC, ∴∠OBC=∠C, ∵∠DBA=∠C, ∴∠DBA+∠OBA=∠OBC+∠OBA=∠ABC=90°, ∴OB⊥BD, ∵点B在⊙O上, ∴BD所在的直线与⊙O相切; (2)【解析】 ∵∠DBO=90°,AD=OA=OB, ∴DO=2BO, ∴∠D=30°, ∴∠AOB=60°, ∵S扇==,S△OBD=OB•BD=×1×=, ∴S阴=S△OBD-S扇=-.
复制答案
考点分析:
相关试题推荐
如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.
(1)求证:四边形EGFH是菱形;
(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.

manfen5.com 满分网 查看答案
在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.
(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是______
(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.

manfen5.com 满分网 查看答案
(1)如图,已知直线AB和直线外一点C.利用尺规,按下面的方法作图:
①取一点P,使点P与点C在直线AB的异侧.以C为圆心,CP的长为半径画弧,与直线AB交于点D、E;
②分别以D、E为圆心,大于manfen5.com 满分网DE的长为半径画弧,两弧交于点F(点F与点C在直线AB的异侧);
③过C、F两点作直线.
(2)判断(1)中直线CF与直线AB的位置关系,并说明理由.

manfen5.com 满分网 查看答案
为迎接建党90周年,某校组织了以“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.
manfen5.com 满分网
根据以上信息,解答下列问题:
(1)求本次抽取了多少份作品,并补全两幅统计图;
(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?
查看答案
计算(manfen5.com 满分网-manfen5.com 满分网)÷manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.