满分5 > 初中数学试题 >

如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B...

如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
manfen5.com 满分网
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
(1)由PQ∥BC时的比例线段关系,列一元一次方程求解; (2)如解答图1所示,过P点作PD⊥AC于点D,构造比例线段,求得PD,从而可以得到S的表达式,然后利用二次函数的极值求得S的最大值; (3)要点是利用(2)中求得的△AQP的面积表达式,再由线段PQ恰好把△ABC的面积平分,列出一元二次方程;由于此一元二次方程的判别式小于0,则可以得出结论:不存在这样的某时刻t,使线段PQ恰好把△ABC的面积平分; (4)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,求得时间t的值;最后求菱形的面积,值得注意的是菱形的面积等于△AQP面积的2倍,从而可以利用(2)中△AQP面积的表达式,这样可以化简计算. 【解析】 ∵AB=10cm,AC=8cm,BC=6cm, ∴由勾股定理逆定理得△ABC为直角三角形,∠C为直角. (1)BP=2t,则AP=10-2t. ∵PQ∥BC,∴,即,解得t=, ∴当t=s时,PQ∥BC. (2)如答图1所示,过P点作PD⊥AC于点D. ∴PD∥BC, ∴, 即, 解得PD=6-t. S=×AQ×PD=×2t×(6-t) =-t2+6t =-(t-)2+, ∴当t=s时,S取得最大值,最大值为cm2. (3)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分, 则有S△AQP=S△ABC,而S△ABC=AC•BC=24,∴此时S△AQP=12. 由(2)可知,S△AQP=-t2+6t, ∴-t2+6t=12,化简得:t2-5t+10=0, ∵△=(-5)2-4×1×10=-15<0,此方程无解, ∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分. (4)假设存在时刻t,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t. 如答图2所示,过P点作PD⊥AC于点D,则有PD∥BC, ∴,即, 解得:PD=6-t,AD=8-t, ∴QD=AD-AQ=8-t-2t=8-t. 在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2, 即(8-t)2+(6-t)2=(2t)2, 化简得:13t2-90t+125=0, 解得:t1=5,t2=, ∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=. 由(2)可知,S△AQP=-t2+6t, ∴S菱形AQPQ′=2S△AQP=2×(-t2+6t)=2×[-×()2+6×]=(cm2). 所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.
复制答案
考点分析:
相关试题推荐
如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)试探究,四边形BECF是什么特殊的四边形?
(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)

manfen5.com 满分网 查看答案
如图,两块相同的三角形完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,求C′D的长.

manfen5.com 满分网 查看答案
阅读下面提供的内容:
关于x的一元二次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两根分别为x1=1,x2=manfen5.com 满分网
证明:因为a+b+c=0,所以c=-a-b,将c=-a-b代入ax2+bx+c=0,得ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0,所以x1=1,x2=manfen5.com 满分网=manfen5.com 满分网
(1)请利用上面推导的结论,快速求解下列方程:
①5x2-4x-1=0,x1=______,x2=______
②.5x2+4x-9=0,x1=______,x2=______
manfen5.com 满分网,x1=______,x2=______
查看答案
如图,梯形ABCD中,AD∥BC,点M是BC的中点,且MA=MD.求证:四边形ABCD是等腰梯形.

manfen5.com 满分网 查看答案
我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线分别为6cm和8cm的菱形,求它的中点四边形的对角线长?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.