满分5 > 初中数学试题 >

如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D....

manfen5.com 满分网如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.
(1)求证:AC平分∠BAD;
(2)若CD=1,AC=manfen5.com 满分网,求⊙O的半径长.
(1)连接OC.先由OA=OC,可得∠ACO=∠CAO,再由切线的性质得出OC⊥CD,根据垂直于同一直线的两直线平行得到AD∥CO,由平行线的性质得∠DAC=∠ACO,等量代换后可得∠DAC=∠CAO,即AC平分∠BAD; (2)解法一:如图2①,过点O作OE⊥AC于E.先在Rt△ADC中,由勾股定理求出AD=3,由垂径定理求出AE=,再根据两角对应相等的两三角形相似证明△AEO∽△ADC,由相似三角形对应边成比例得到,求出AO=,即⊙O的半径为;解法二:如图2②,连接BC.先在Rt△ADC中,由勾股定理求出AD=3,再根据两角对应相等的两三角形相似证明△ABC∽△ACD,由相似三角形对应边成比例得到,求出AB=,则⊙O的半径为. (1)证明:连接OC. ∵OA=OC, ∴∠ACO=∠CAO. ∵CD切⊙O于C, ∴OC⊥CD, 又∵AD⊥CD, ∴AD∥CO, ∴∠DAC=∠ACO, ∴∠DAC=∠CAO, 即AC平分∠BAD; (2)解法一:如图2①,过点O作OE⊥AC于E. 在Rt△ADC中,AD===3, ∵OE⊥AC, ∴AE=AC=. ∵∠CAO=∠DAC,∠AEO=∠ADC=90°, ∴△AEO∽△ADC, ∴,即, ∴AO=,即⊙O的半径为. 解法二:如图2②,连接BC. 在Rt△ADC中,AD===3. ∵AB是⊙O直径,∴∠ACB=90°, ∵∠CAB=∠DAC,∠ACB=∠ADC=90°, ∴△ABC∽△ACD, ∴, 即, ∴AB=, ∴=, 即⊙O的半径为.
复制答案
考点分析:
相关试题推荐
如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为manfen5.com 满分网(即tan∠PCD=manfen5.com 满分网).
(1)求该建筑物的高度(即AB的长).
(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)
manfen5.com 满分网
查看答案
小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率.
(2)你认为这个游戏公平吗?请说明理由.
查看答案
某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?
(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.
(1)求证:△ABC≌△CDA;
(2)若∠B=60°,求证:四边形ABCD是菱形.
查看答案
manfen5.com 满分网在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点)
(1)画出△ABC向下平移3个单位后的△A1B1C1
(2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.