满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,A...

manfen5.com 满分网如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=manfen5.com 满分网AB;
(3)点M是manfen5.com 满分网的中点,CM交AB于点N,若AB=4,求MN•MC的值.
(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线; (2)AB是直径;故只需证明BC与半径相等即可; (3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN•MC;代入数据可得MN•MC=BM2=8. (1)证明:∵OA=OC, ∴∠A=∠ACO. 又∵∠COB=2∠A,∠COB=2∠PCB, ∴∠A=∠ACO=∠PCB. 又∵AB是⊙O的直径, ∴∠ACO+∠OCB=90°. ∴∠PCB+∠OCB=90°. 即OC⊥CP, ∵OC是⊙O的半径. ∴PC是⊙O的切线.(3分) (2)证明:∵AC=PC, ∴∠A=∠P, ∴∠A=∠ACO=∠PCB=∠P. 又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB, ∴∠COB=∠CBO, ∴BC=OC. ∴BC=AB.(6分) (3)【解析】 连接MA,MB, ∵点M是的中点, ∴, ∴∠ACM=∠BCM. ∵∠ACM=∠ABM, ∴∠BCM=∠ABM. ∵∠BMN=∠BMC, ∴△MBN∽△MCB. ∴. ∴BM2=MN•MC. 又∵AB是⊙O的直径,, ∴∠AMB=90°,AM=BM. ∵AB=4, ∴BM=2. ∴MN•MC=BM2=8.(10分)
复制答案
考点分析:
相关试题推荐
小明打算用一张半圆形的纸做一个圆锥.在制作过程中,他先将半圆剪成面积比为1:2的两个扇形.
(1)请你在图中画出他的裁剪痕迹.(要求尺规作图,保留作图痕迹)
(2)若半圆半径是3,大扇形作为圆锥的侧面,则小明必须在小扇形纸片中剪下多大的圆才能组成圆锥?小扇形纸片够大吗(不考虑损耗及接缝)?

manfen5.com 满分网 查看答案
某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?
查看答案
如图,甲船从港口A出发沿北偏东15°方向行驶,同时,乙船也从港口A出发沿西北方向行驶.若干小时之后,甲船位于点C处,乙船位于港口B的北偏东60°方向,距离岸BD边10海里的P处.并且观测到此时点B、P、C在同一条直线上.求甲船航行的距离AC为多少海里(结果保留根号)?

manfen5.com 满分网 查看答案
在北京举行的2008年奥运会中,某校学生会为了了解全校同学喜欢收看奥运会比赛项目的情况,随机调查了若干名同学(每人只能选其中一项),根据调查结果制作了频数分布表和统计图.请根据图中提供的信息解答下列问题:
(1)补全频数分布表和条形统计图;
最喜欢收看的项目频数(人数)频率
足球20%
篮球25%
排球610%
乒乓球15
其他1220%
合计1
(2)根据以上调查,试估计该校1800名学生中,最喜欢收看篮球比赛的人数.
(3)根据统计图和统计表,谈谈你的想法.

manfen5.com 满分网 查看答案
如图,一次函数y=kx+b与反比例函数manfen5.com 满分网的图象相交于A,B两点,且与坐标轴的交点为(-6,0),(0,6),点B的横坐标为-4,
(1)试确定反比例函数的解析式;
(2)求AOB的面积;
(3)直接写出不等式manfen5.com 满分网的解.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.