满分5 >
初中数学试题 >
如图所示,直线l与直线a,b相交,且a∥b,∠1=70°,则∠2的度数是( ) ...
如图所示,直线l与直线a,b相交,且a∥b,∠1=70°,则∠2的度数是( )
A.60°
B.70°
C.100°
D.110°
考点分析:
相关试题推荐
4的算术平方根是( )
A.-2
B.2
C.±2
D.16
查看答案
|-2|的倒数是( )
A.2
B.-2
C.
D.
查看答案
如图,菱形ABCD中,对角线AC、BD交于点O,点P在对角线BD上运动(B、D两点除外),线段PA绕点P顺时针旋转m°(0<m<180),得线段PQ.
(1)若点Q与点D重合,请在图中用尺规作出点P所处的位置(不写作法,保留作图痕迹);
(2)若点Q落在边CD上,且∠ADB=n°.
①探究m与n之间的数量关系;
②若点P在线段OB上运动,PQ=QD,求n的取值范围.(在备用图中探究)
查看答案
某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.
(1)求顾客一次至少买多少件,才能以最低价购买?
(2)写出当一次出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;
(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?
查看答案
在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.
(1)图中点P的坐标为(0.5,0),请解释该点坐标所表示的实际意义;
(2)填空:A、C两港口间的距离为______km,a=______;
当0<x≤0.5时,y与x的函数关系式为:______;
当0.5<x≤a时,y与x的函数关系式为:______;
(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为24km,求该海巡船能接受到该信号的时间有多长?
(4)请你根据以上信息,针对A岛,就该海巡船航行的“路程”,提出一个问题,并写出解答过程.
查看答案