满分5 > 初中数学试题 >

如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB...

如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2-25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.
(1)求点C的坐标.
(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.
(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)证△AOC∽△COB,推出OC2=OA•OB,即可得出答案. (2)求出OA=9,OC=12,OB=16,AC=15,BC=20,证△ACD≌△AED,推出AE=AC=15,证△BDE∽△BAC,求出DE=,D(6,),设直线AD的解析式是y=kx+b,过A(-9,0)和D点,代入得出,求出k=,b=即可. (3)存在点M,使得C、B、N、M为顶点的四边形是正方形, 理由是:①以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个,证△BQF∽△BOC,求出BF=,F(,0),Q(8,6),设直线QF的解析式是y=ax+c,代入得出,求出a=,c=-,得出直线FQ的解析式是:y=x-,设M的坐标是(x,x-),根据CM=BM和勾股定理得:(x-0)2+(x--12)2=(x-16)2+(x--0)2,即可求出M的坐标;②以BC为一边时,过B作BM3⊥BC,且BM3=BC=20,过M3Q⊥OB于Q,还有一点M4,CM4=BC=20,CM4⊥BC,证△BCO≌△M3BQ,求出BQ=CO=12,QM3=OB=16,求出M3的坐标,同法可求出M4的坐标. 【解析】 (1)在Rt△AOC中,∠CAB+∠ACO=90°,在Rt△ABC中,∠CAB+∠CBA=90°, ∴∠ACO=∠CBA, ∵∠AOC=∠COB=90°, ∴△AOC∽△COB, ∴OC2=OA•OB, ∴OC=12, ∴C(0,12); (2)在Rt△AOC和Rt△BOC中, ∵OA=9,OC=12,OB=16, ∴AC=15,BC=20, ∵AD平分∠CAB, ∵DE⊥AB, ∴∠ACD=∠AED=90°, ∵AD=AD, ∴△ACD≌△AED, ∴AE=AC=15, ∴OE=AE-OA=15-9=6,BE=10, ∵∠DBE=∠ABC,∠DEB=∠ACB=90°, ∴△BDE∽△BAC, ∴=, ∴DE=, ∴D(6,), 设直线AD的解析式是y=kx+b, ∵过A(-9,0)和D点,代入得:, k=,b=, 直线AD的解析式是:y=x+; (3)存在点M,使得C、B、N、M为顶点的四边形是正方形, 理由是:① 以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个, BQ=CQ=BC=10, ∵∠BQF=∠BOC=90°,∠QBF=∠CBO, ∴△BQF∽△BOC, ∴=, ∵BQ=10,OB=16,BC=20, ∴BF=, ∴OF=16-=, 即F(,0), ∵OC=12,OB=16,Q为BC中点, ∴Q(8,6), 设直线QF的解析式是y=ax+c, 代入得:, a=,c=-, 直线FQ的解析式是:y=x-, 设M的坐标是(x,x-), 根据CM=BM和勾股定理得:(x-0)2+(x--12)2=(x-16)2+(x--0)2, x1=14,x2=2, 即M的坐标是(14,14),(2,-2); ② 以BC为一边时,过B作BM3⊥BC,且BM3=BC=20,过M3Q⊥OB于Q,还有一点M4,CM4=BC=20,CM4⊥BC, 则∠COB=∠M3B=∠CBM3=90°, ∴∠BCO+∠CBO=90°,∠CBO+∠M3BQ=90°, ∴∠BCO=∠M3BQ, ∵在△BCO和△M3BQ中 ∴△BCO≌△M3BQ(AAS), ∴BQ=CO=12,QM3=OB=16, OQ=16+12=28, 即M3的坐标是(28,16), 同法可求出CT=OB=16,M4T=OC=12,OT=16-12=4, ∴M4的坐标是(-12,-4), 即存在,点M的坐标是(28,16)或(14,14)或(-12,-4)或(2,-2).
复制答案
考点分析:
相关试题推荐
为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.
查看答案
正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.
(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)
(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.
manfen5.com 满分网
查看答案
2012年秋季,某省部分地区遭受严重的雨雪自然灾害,兴化农场34800亩的农作物面临着收割困难的局面.兴华农场积极想办法,决定采取机械收割和人工收割两种方式同时进行抢收,工作了4天,由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的manfen5.com 满分网,第8天时,雨雪停止附近的胜利农场前来支援,合作6天,完成了兴化农场所有的收割任务.图1是机械收割的亩数y1(亩)和人工收割的亩数y2(亩)与时间x(天)之间的函数图象.图2是剩余的农作物的亩数w(亩)与时间x天之间的函数图象,请结合图象回答下列问题.
(1)请直接写出:A点的纵坐标______
(2)求直线BC的解析式.
(3)第几天时,机械收割的总量是人工收割总量的10倍?
manfen5.com 满分网
查看答案
在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)本次共抽查了多少名学生?
(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x≤155所在扇形的圆心角度数.
(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?
(4)请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,抛物线y=x2+bx+c与x轴交于A(-1,0)和B(3,0)两点,交y轴于点E.
(1)求此抛物线的解析式.
(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.