满分5 > 初中数学试题 >

如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,与x轴交于...

如图,一次函数y=ax+b的图象与反比例函数y=manfen5.com 满分网的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=manfen5.com 满分网,tan∠AOC=manfen5.com 满分网,点B的坐标为(m,-2).
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.

manfen5.com 满分网
(1)中,因为OA=,tan∠AOC=,则可过A作AE垂直x轴,垂足为E,利用三角函数和勾股定理即可求出AE=1,OE=3,从而可知A(3,1),又因点A在反比例函数y=的图象上,由此可求出开k=3,从而求出反比例函数的解析式. (2)中,因为一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,点B的坐标为(m,-2).所以3=-2x. 即m=-,B(-,-2).然后把点A、B的坐标代入一次函数的解析式,得到关于a、b的方程组,解之即可求出a、b的值,最终写出一次函数的解析式. (3)因为在y轴上存在一点P,使得△PDC与△ODC相似,而∠PDC和∠ODC是公共角,所以有△PDC∽△CDO,,而点C、D分别是一次函数y=x-1的图象与x轴、y轴的交点,因此有C(,0)、D(0,-1).OC=,OD=1,DC=. 进而可求出PD=,OP=.写出点P的坐标. 【解析】 (1)过A作AE垂直x轴,垂足为E, ∵tan∠AOC=, ∴OE=3AE ∵OA=,OE2+AE2=10, ∴AE=1,OE=3 ∴点A的坐标为(3,1). ∵A点在双曲线上, ∴, ∴k=3. ∴双曲线的解析式为. (2)∵点B(m,-2)在双曲线上, ∴-2=, ∴m=-. ∴点B的坐标为(-,-2). ∴,∴ ∴一次函数的解析式为y=x-1. (3)过点C作CP⊥AB,交y轴于点P, ∵C,D两点在直线y=x-1上, ∴C,D的坐标分别是:C(,0),D(0,-1). 即:OC=,OD=1, ∴DC=. ∵△PDC∽△CDO, ∴, ∴PD= 又OP=DP-OD= ∴P点坐标为(0,).
复制答案
考点分析:
相关试题推荐
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为manfen5.com 满分网(即AB:BC=manfen5.com 满分网),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.

manfen5.com 满分网 查看答案
某校数学活动小组随机调查学校住在校外的100名同学的上学方式,根据调查统计结果,按“步行”、“骑自行车”和“其他”三类汇总分析,并制成条形统计图和扇形统计图(如图所示).
(1)请你补全条形统计图和扇形统计图;
(2)求出扇形统计图中“步行”部分的圆心角的度数;
(3)学校正在规划新的学生自行车停车场,一般情况下,5辆自行车占地2m2,另有自行车停放总面积的manfen5.com 满分网作为通道.若全校共有1200名同学住在校外,那么请你估计,学校应当规划至少多大面积的学生自行车停车场(骑自行车的学生按每人骑一辆计算).
manfen5.com 满分网
查看答案
先化简,再求代数式的值:manfen5.com 满分网,其中a=tan60°-2sin30°.
查看答案
如图,在△ABC中,AB=BC=6,∠A=30°,过边BC上一点E,沿与底边垂直的方向折叠得到△EFC′,当△ABC′为直角三角形时,折痕EF=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.