满分5 > 初中数学试题 >

如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0)...

如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-manfen5.com 满分网x2+bx+c经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线y=-manfen5.com 满分网x2+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形?若存在,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
manfen5.com 满分网
(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式; (2)①先用m 表示出QE的长度,进而求出三角形的面积S关于m的函数,化简为顶点式,便可求出S的最大值; ②直接写出满足条件的F点的坐标即可,注意不要漏写. 【解析】 (1)将A、C两点坐标代入抛物线y=-x2+bx+c, , 解得, ∴抛物线的解析式为y=-x2+x+8; (2)①∵OA=8,OC=6 ∴AC==10, 过点Q作QE⊥BC与E点,则sin∠ACB===, ∴=, ∴QE=(10-m), ∴S=•CP•QE=m×(10-m)=-m2+3m=-(m-5)2+, ∴当m=5时,S取最大值; ②在抛物线对称轴l上存在点F,使△FDQ为直角三角形, ∵抛物线的解析式为y=-x2+x+8的对称轴为x=, D的坐标为(3,8),Q(3,4), 当∠FDQ=90°时,F1(,8), 当∠FQD=90°时,则F2(,4), 当∠DFQ=90°时,设F(,n), 则FD2+FQ2=DQ2, 即+(8-n)2++(n-4)2=16, 解得:n=6±, ∴F3(,6+),F4(,6-), 满足条件的点F共有四个,坐标分别为 F1(,8),F2(,4),F3(,6+),F4(,6-).
复制答案
考点分析:
相关试题推荐
在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.
manfen5.com 满分网
(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;
(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;
(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.
查看答案
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
如图,一次函数y=ax+b的图象与反比例函数y=manfen5.com 满分网的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=manfen5.com 满分网,tan∠AOC=manfen5.com 满分网,点B的坐标为(m,-2).
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.

manfen5.com 满分网 查看答案
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为manfen5.com 满分网(即AB:BC=manfen5.com 满分网),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.