满分5 > 初中数学试题 >

如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现...

如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.
(1)当x=0时,折痕EF的长为______;当点E与点A重合时,折痕EF的长为______
(1)当x=0时,点A与点P重合,则折痕EF的长等于矩形ABCD中的AB,当点E与点A重合时,折痕是一个直角的角平分线,可求EF=; (2)由题意可知,EF垂直平分线段DP,要想使四边形EPFD为菱形,则EF也应被DP平分,所以点E必须要在线段AB上,点F必须在线段DC上,即可确定x的取值范围.再利用勾股定理确定菱形的边长. (3)构造直角三角形,利用相似三角形的对应线段成比例确定y的值,再利用二次函数的增减性确定y的最大值. 【解析】 (1)当x=0时,折痕EF=AB=3,当点E与点A重合时,折痕EF==. (2)1≤x≤3. 当x=2时,如图,连接PE、PF. ∵EF为折痕, ∴DE=PE, 令PE为m,则AE=2-m,DE=m, 在Rt△ADE中,AD2+AE2=DE2 ∴1+(2-m)2=m2,解得m=; 此时菱形边长为. (3)如图2,过E作EH⊥BC; ∵△EFH∽△DPA, ∴, ∴FH=3x; ∴y=EF2=EH2+FH2=9+9x2; 当F与点C重合时,如图3,连接PF; ∵PF=DF=3, ∴PB=, ∴0≤x≤3-2; ∵函数y=9+9x2的值在y轴的右侧随x的增大而增大, ∴当x=3-2时,y有最大值, 此时∠EPF=90°,△EAP∽△PBF. 综上所述,当y取最大值时△EAP∽△PBF,x=3-2.
复制答案
考点分析:
相关试题推荐
一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.

manfen5.com 满分网 查看答案
为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的体育运动活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图1和图2.
manfen5.com 满分网
(1)请在图1中将表示“乒乓球”项目的图形补充完整;
(2)求扇形统计图2中表示“足球”项目扇形圆心角的度数.
查看答案
manfen5.com 满分网如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)若AD=4,BC=9,求⊙O的半径R.
查看答案
化简求值:manfen5.com 满分网manfen5.com 满分网×manfen5.com 满分网,其中x=2. 查看答案
如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE.
(1)求△ABC的面积S;
(2)判断AC、DE的位置关系,并给出证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.