满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(...

如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,4manfen5.com 满分网),延长AC到点D,使CD=manfen5.com 满分网AC,过点D作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)

manfen5.com 满分网
(1)借助△DMC∽△AOC,根据相似三角形的性质得点D的坐标; (2)先说明四边形CDFE是菱形,且其对称中心为对角线的交点M,则点B与这一点的连线即为所求的直线,再结合全等三角形性质说明即可,由点B、M的坐标求得直线BM的解析式; (3)过点A作MB的垂线,该垂线与y轴的交点即为所求的点G,再结合由OB、OM的长设法求出∠BAH,借助三角函数求出点G的坐标. 【解析】 (1)∵A(-6,0),C(0,4) ∴OA=6,OC=4 设DE与y轴交于点M 由DE∥AB可得△DMC∽△AOC 又∵CD=AC ∴ ∴CM=2,MD=3 同理可得EM=3 ∴OM=6 ∴D点的坐标为(3,6); (2)由(1)可得点M的坐标为(0,6) 由DE∥AB,EM=MD 可得y轴所在直线是线段ED的垂直平分线 ∴点C关于直线DE的对称点F在y轴上 ∴ED与CF互相垂直平分 ∴CD=DF=FE=EC ∴四边形CDFE为菱形,且点M为其对称中心 作直线BM,设BM与CD、EF分别交于点S、点T, 可证△FTM≌△CSM ∴FT=CS, ∵FE=CD, ∴TE=SD, ∵EC=DF, ∴TE+EC+CS+ST=SD+DF+FT+TS, ∴直线BM将四边形CDFE分成周长相等的两个四边形, 由点B(6,0),点M(0,6)在直线y=kx+b上,可得直线BM的解析式为y=-x+6. (3)确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点 由OB=6,OM=6, 可得∠OBM=60°, ∴∠BAH=30°, 在Rt△OAG中,OG=AO•tan∠BAH=2, ∴G点的坐标为.(或G点的位置为线段OM的中点)
复制答案
考点分析:
相关试题推荐
在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=manfen5.com 满分网,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
manfen5.com 满分网
查看答案
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:
(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);
(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连接AF、BG、CH、DE得到一个新的平行四边形MNPQ,请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果).manfen5.com 满分网
查看答案
在每年年初召开的市人代会上,北京市财政局都要报告上一年度市财政预算执行情况和当年预算情况.以下是根据2004-2008年度报告中的有关数据制作的市财政教育预算与实际投入统计图表的一部分.
2004-2008年北京市财政教育实际投入与预算差值统计表(单位:亿元)
 年份2004 2005 2006  20072008 
 教育实际投入与预算差值  6.7 5.7 14.6 7.3
manfen5.com 满分网
请根据以上信息解答下列问题:
(1)请在表1的空格内填入2004年市财政教育实际投入与预算的差值;
(2)求2004-2008年北京市财政教育实际投入与预算差值的平均数;
(3)已知2009年北京市财政教育预算是141.7亿元.在此基础上,如果2009年北京市财政教育实际投入按照(2)中求出的平均数增长,估计它的金额可能达到多少亿元?
查看答案
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=manfen5.com 满分网时,求⊙O的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.