满分5 > 初中数学试题 >

探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥...

manfen5.com 满分网探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.
应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为______
探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解; 应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解. 探究:如图①,过点A作AF⊥CB,交CB的延长线于点F, ∵AE⊥CD,∠BCD=90°, ∴四边形AFCE为矩形, ∴∠FAE=90°, ∴∠FAB+∠BAE=90°, ∵∠EAD+∠BAE=90°, ∴∠FAB=∠EAD, ∵在△AFB和△AED中, , ∴△AFB≌△AED(AAS), ∴AF=AE, ∴四边形AFCE为正方形, ∴S四边形ABCD=S正方形AFCE=AE2=102=100; 应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC, 则∠ADF+∠ADC=180°, ∵∠ABC+∠ADC=180°, ∴∠ABC=∠ADF, ∵在△ABE和△ADF中, , ∴△ABE≌△ADF(AAS), ∴AF=AE=19, ∴S四边形ABCD=S△ABC+S△ACD =BC•AE+CD•AF =×10×19+×6×19 =95+57 =152. 故答案为:152.
复制答案
考点分析:
相关试题推荐
甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.
(1)分别求线段BC、DE所在直线对应的函数关系式.
(2)当甲队清理完路面时,求乙队铺设完的路面长.

manfen5.com 满分网 查看答案
某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.
(1)求这n名学生中剩饭学生的人数及n的值.
(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.
(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为12.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)
查看答案
在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.

manfen5.com 满分网 查看答案
某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.