满分5 > 初中数学试题 >

下列多项式中,能用公式法分解因式的是( ) A.x2-xy B.x2+xy C....

下列多项式中,能用公式法分解因式的是( )
A.x2-xy
B.x2+xy
C.x2-y2
D.x2+y2
能用平方差公式进行因式分解的式子的特点是:两个平方项,符号相反; 能用完全平方公式法进行因式分解的式子的特点是:两个平方项的符号相同,另一项是两底数积的2倍. 【解析】 A、x2-xy只能提公因式分解因式,故选项错误; B、x2+xy只能提公因式分解因式,故选项错误; C、x2-y2能用平方差公式进行因式分解,故选项正确; D、x2+y2不能继续分解因式,故选项错误. 故选C.
复制答案
考点分析:
相关试题推荐
计算-5的绝对值是( )
A.5
B.manfen5.com 满分网
C.-5
D.0.5
查看答案
已知直线manfen5.com 满分网与x轴y轴分别交于点A和点B,点B的坐标为(0,6)
(1)求的m值和点A的坐标;
(2)在矩形OACB中,某动点P从点B出发以每秒1个单位的速度沿折线B-C-A运动.运动至点A停止.直线PD⊥AB于点D,与x轴交于点E.设在矩形OACB中直线PD未扫过的面积为S,运动时间为t.
①求s与t的函数关系式;
②⊙Q是△OAB的内切圆,问:t为何值时,PE与⊙Q相交的弦长为2.4?

manfen5.com 满分网 查看答案
如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.
(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
某84消毒液工厂,去年五月份以前,每天的产量与销售量均为500箱,进入五月份后,每天的产量保持不变,市场需求量不断增加.如图是五月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(五月份以30天计算)
(1)该厂______月份开始出现供不应求的现象.五月份的平均日销售量为______箱;
(2)为满足市场需求,该厂打算在投资不超过220万元的情况下,购买8台新设备,使扩大生产规模后的日产量不低于五月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:
型    号AB
价格(万元/台)2825
日产量(箱/台)5040
请设计一种购买设备的方案,使得日产量最大;
(3)在(2)的条件下(市场日平均需求量与5月相同),若安装设备需5天(6月6日新设备开始生产),指出何时开始该厂有库存?

manfen5.com 满分网 查看答案
知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)
(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板A1B1C1D1的面积是多少平方米?
manfen5.com 满分网
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,你认为呢?请说明理由.
manfen5.com 满分网
(2)拓展思维:北方一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.