利用待定系数法求一次函数解析式求出直线的解析式,再求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到各点的纵坐标的规律.
【解析】
∵A1(1,1),A2(,)在直线y=kx+b上,
∴,
解得,
∴直线解析式为y=x+,
如图,设直线与x轴、y轴的交点坐标分别为N、M,
当x=0时,y=,
当y=0时,x+=0,解得x=-4,
∴点M、N的坐标分别为M(0,),N(-4,0),
∴tan∠MNO===,
作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,
∵A1(1,1),A2(,),
∴OB2=OB1+B1B2=2×1+2×=2+3=5,
tan∠MNO===,
∵△B2A3B3是等腰直角三角形,
∴A3C3=B2C3,
∴A3C3==()2,
同理可求,第四个等腰直角三角形A4C4==()3,
依此类推,点An的纵坐标是()n-1.
∴点A2013的纵坐标是()2012.
故答案为:()2012.