如图,在梯形ABCD中,AB=2,AD=4,BC=6,将梯形折叠,使B落在边AD上,落点记为E,这时折痕与边BC(含端点)交于F,则以B、E、F为顶点的三角形△BEF称为梯形ABCD的“折痕三角形”.
(1)在梯形ABCD,当它的“折痕△BEF”的顶点E位于AD的中点时,直接写出点F的坐标;
(2)在梯形ABCD中是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?
考点分析:
相关试题推荐
已知:如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,∠AOD=∠APC.
(1)求证:AP是⊙O的切线;
(2)若AC=4CO,AP=
,求⊙O的半径.
查看答案
如图,四边形ABCD的对角线AC、DB相交于点O,已知:AC=BD,∠OBC=∠OCB.
(1)求证:AB=DC;
(2)判别结论“四边形ABCD一定是等腰梯形”是否正确,若正确请证明,若不正确请举出一个反例.
查看答案
如图:直线y=ax+b分别与x轴,y轴相交于A、B两点,与双曲线
,(x>0)相交于点P,PC⊥x轴于点C,点A的坐标为(-4,0),点B的坐标为(0,2),PC=3.
(1)求双曲线对应的函数关系式;
(2)若点Q在双曲线上,且QH⊥x轴于点H,△QCH与△AOB相似,请求出点Q的坐标.
查看答案
某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.60元计费.
(1)求出租车收费y(元)与行驶路程x(千米)之间的函数关系式;
(2)若某人一次乘出租车时,付出了车费14.40元,求他这次乘坐了多少千米的路?
查看答案
某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).
(1)求调整后楼梯AD的长;
(2)求BD的长.
(结果保留根号)
查看答案