满分5 > 初中数学试题 >

如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC...

如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
manfen5.com 满分网
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;
(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD=manfen5.com 满分网时,求线段CM的长.
(1)根据△ABC是等腰直角三角形,四边形ADEF是正方形,根据角边角关系证出△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF; (2)先设BG交AC于点M,根据(1)证出的△BAD≌△CAF,可得∠ABM=∠GCM,又根据对顶角相等,得出△BMA∽△CMG,再根据根据相似三角形的对应角相等,可得∠BGC=∠BAC=90°,即可证出BD⊥CF; (3)首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM的值,从而求出CM的值. (1)【解析】 BD=CF成立. 理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形, ∴AB=AC,AD=AF,∠BAC=∠DAF=90°, ∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC, ∴∠BAD=∠CAF, ∵在△BAD和△CAF中, , ∴△BAD≌△CAF(SAS), ∴BD=CF. (2)证明:设BG交AC于点M, ∵△BAD≌△CAF, ∴∠ABM=∠GCM, ∵∠BMA=∠CMG, ∴△BMA∽△CMG, ∴∠BGC=∠BAC=90°, ∴BD⊥CF. (3)过点F作FN⊥AC于点N, ∵在正方形ADEF中,AD=DE=, ∴AE==2, ∴AN=FN=AE=1. ∵在等腰直角△ABC中,AB=AC=4, ∴CN=AC-AN=3,BC==4, ∴在Rt△FCN中,tan∠FCN==, ∴在Rt△ABM中,tan∠ABM=tan∠FCN=, ∴AM=AB=, ∴CM=AC-AM=4-=.
复制答案
考点分析:
相关试题推荐
如图,反比例函数manfen5.com 满分网(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=manfen5.com 满分网
(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数manfen5.com 满分网(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;
(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.

manfen5.com 满分网 查看答案
“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;
(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?

manfen5.com 满分网 查看答案
广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
查看答案
(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).
(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.
你添加的条件是:______
证明:

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.