满分5 > 初中数学试题 >

正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将...

正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM;
(2)当AE=1时,求EF的长.

manfen5.com 满分网
(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF; (2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长. 【解析】 (1)证明:∵△DAE逆时针旋转90°得到△DCM, ∴∠FCM=∠FCD+∠DCM=180°, ∴F、C、M三点共线, ∴DE=DM,∠EDM=90°, ∴∠EDF+∠FDM=90°, ∵∠EDF=45°, ∴∠FDM=∠EDF=45°, 在△DEF和△DMF中, , ∴△DEF≌△DMF(SAS), ∴EF=MF;…(4分) (2)设EF=MF=x, ∵AE=CM=1,且BC=3, ∴BM=BC+CM=3+1=4, ∴BF=BM-MF=BM-EF=4-x, ∵EB=AB-AE=3-1=2, 在Rt△EBF中,由勾股定理得EB2+BF2=EF2, 即22+(4-x)2=x2, 解得:x=, 则EF=.…(8分)
复制答案
考点分析:
相关试题推荐
某影视城同时放映三部不同的电影,分别记为A、B、C.
(1)若王老师从中随机选择一部观看,则恰好是电影A的概率是______
(2)若小聪从中随机选择一部观看,小芳也从中随机选择一部观看,求至少有一人在看A电影的概率.
查看答案
已知:二次三项式-x2-4x+5.
(1)求当x为何值时,此二次三项式的值为1.
(2)证明:无论x取何值,此二次三项式的值都不大于9.
查看答案
如图,点A、F、C、D在同一直线上,点B和点E分别在AD的两侧,且AF=DC,AB=DE,AB∥DE.
(1)求证:△ABC≌△DEF;
(2)连接BF、CE,求证:四边形BFEC是平行四边形.

manfen5.com 满分网 查看答案
2012年2月,国务院发布新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,环境检测中心今年在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:
类别组别PM2.5日平均浓度值(微克/立方米)频数频率
A115~3020.08
230~4530.12
B345~60ab
460~7550.20
C575~906c
D690~10540.16
           合计以上分组均含最小值,不含最大值251.00
根据图表中提供的信息解答下列问题:
(1)统计表中的a=______,b=______,c=______
(2)在扇形统计图中,A类所对应的圆心角是______度;
(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?

manfen5.com 满分网 查看答案
甲、乙两人共同加工同一种机器零件,6天可以完成任务.如果甲单独完成,则完成这项任务所需的时间是乙单独完成所需时间的2倍.求甲、乙两人单独完成这项任务各需多少天?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.