A、B两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶(客车的终点站是C站,货车的终点站是A站).客车需9小时到达C站,货车2小时可到达途中C站(如图1所示).货车的速度是客车的
,客车、货车到C站的距离分别为y
1、y
2(千米),它们与行驶时间x(小时)之间的函数关系(如图2所示).
(1)客车的速度是______千米/小时,货车的速度是______千米/小时;
(2)P点坐标的实际意义是______;
(3)求两小时后,货车与C站的距离y
2与行驶时间x之间的函数关系式;
(4)求客车与货车同时出发后,经过多长时间两车相距360千米?
考点分析:
相关试题推荐
已知:如图,△ABC中,以AB为直径的⊙O交AC于点D,且D为AC的中点,过D作DE丄CB,垂足为E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)已知CD=4,CE=3,求⊙O的半径.
查看答案
如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).
(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案
正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM;
(2)当AE=1时,求EF的长.
查看答案
某影视城同时放映三部不同的电影,分别记为A、B、C.
(1)若王老师从中随机选择一部观看,则恰好是电影A的概率是______;
(2)若小聪从中随机选择一部观看,小芳也从中随机选择一部观看,求至少有一人在看A电影的概率.
查看答案
已知:二次三项式-x
2-4x+5.
(1)求当x为何值时,此二次三项式的值为1.
(2)证明:无论x取何值,此二次三项式的值都不大于9.
查看答案