-7的相反数是( )
A.7
B.-7
C.
D.-
考点分析:
相关试题推荐
如图1,在平面直角坐标系中,二次函数
的图象与x轴交于点A、B,它的对称轴是过点(1,0)且与y轴平行的直线,点A的横坐标是-2.
(1)求二次函数
的关系式;
(2)如图2,直线l过点C(2,0)且与y轴平行,现有点P由点A出发沿射线AO以每秒2个单位长度的速度运动,同时点Q从点C出发,沿直线l向上以每秒1个单位长度的速度运动,设运动的时间为t秒.
①当PQ⊥AQ时,求t的值;
②在二次函数的图象上是否存在点D,使得点P、D、C、Q围成的四边形是平行四边形?若存在求出点D的坐标;若不存在,请说明理由.
查看答案
A、B两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶(客车的终点站是C站,货车的终点站是A站).客车需9小时到达C站,货车2小时可到达途中C站(如图1所示).货车的速度是客车的
,客车、货车到C站的距离分别为y
1、y
2(千米),它们与行驶时间x(小时)之间的函数关系(如图2所示).
(1)客车的速度是______千米/小时,货车的速度是______千米/小时;
(2)P点坐标的实际意义是______;
(3)求两小时后,货车与C站的距离y
2与行驶时间x之间的函数关系式;
(4)求客车与货车同时出发后,经过多长时间两车相距360千米?
查看答案
已知:如图,△ABC中,以AB为直径的⊙O交AC于点D,且D为AC的中点,过D作DE丄CB,垂足为E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)已知CD=4,CE=3,求⊙O的半径.
查看答案
如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).
(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案
正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM;
(2)当AE=1时,求EF的长.
查看答案