满分5 > 初中数学试题 >

在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F...

在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、BF、CF.
(1)判断四边形AECD的形状(不证明);
(2)在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明;
(3)若CD=2,求四边形BCFE的面积.

manfen5.com 满分网
(1)根据题意可知AE∥CD且AE=CD,所以四边形AECD是平行四边形. (2)连接DE,证出四边形DEBC是矩形,再加上F是AD的中点,∠A=60°,可得出△AFE是等边三角形,那么就可证出△BEF≌△FDC. (3)因为F是AD的中点,所以能得出△EFC的面积是平行四边AECD的面积的一半,再加上∠A=60°,可求出DE(BC=DE)的长,再利用三角形的面积公式计算就可以了. 【解析】 (1)平行四边形(2分); (2)△BEF≌△CDF(3分)或(△AFB≌△EBC≌△EFC) 证明:连接DE, ∵AB=2CD,E为AB中点, ∴DC=EB, 又∵DC∥EB, ∴四边形BCDE是平行四边形, ∵AB⊥BC, ∴四边形BCDE为矩形, ∴∠AED=90°,∠CDE=∠BED=90°,BE=CD, 在Rt△AED中,∠A=60°,F为AD的中点, ∴AF=AD=EF, ∴△AEF为等边三角形, ∴∠DFE=180°-60°=120°, ∵EF=DF, ∴∠FDE=∠FED=30°. ∴∠CDF=∠BEF=120°, 在△BEF和△FDC中, , ∴△BEF≌△CDF(SAS).(6分)(其他情况证明略) (3)若CD=2,则AD=4, ∵∠A=60°, ∴sin60°==, ∴DE=AD•=2 ∴DE=BC=2, ∵四边形AECD为平行四边形, ∴S△ECF与S四边形AECD等底同高, ∴S△ECF=S四边形AECD=CD•DE=×2×2=2, S△CBE=BE•BC=×2×2=2, ∴S四边形BCFE=S△ECF+S△EBC=2+2=4.(9分)
复制答案
考点分析:
相关试题推荐
物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.
(1)你认为平行四边形的重心位置在哪里?请说明理由;
(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).

manfen5.com 满分网 查看答案
化简后求值:(a-b)2+b(2a+b),其中a=manfen5.com 满分网,b=manfen5.com 满分网
查看答案
如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,
∠BAE的大小可以是   
manfen5.com 满分网 查看答案
二次函数y=x2+bx+c的图象的顶点为D,与x轴正方向从左至右依次交于A,B两点,与y轴正方向交于C点,若△ABD和△OBC均为等腰直角三角形(O为坐标原点),则b+2c=    查看答案
若xmanfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.