满分5 > 初中数学试题 >

如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0)...

如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=manfen5.com 满分网x2+bx-2的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.
manfen5.com 满分网
如解答图所示: (1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式; (2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式; (3)首先作出▱PACB,然后证明点P在抛物线上即可. 【解析】 (1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°. ∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°, ∴∠OAB=∠ACD,∠OBA=∠CAD. ∵在△AOB与△CDA中, ∴△AOB≌△CDA(ASA). ∴CD=OA=1,AD=OB=2, ∴OD=OA+AD=3, ∴C(3,1). ∵点C(3,1)在抛物线y=x2+bx-2上, ∴1=×9+3b-2,解得:b=-. ∴抛物线的解析式为:y=x2-x-2. (2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=. ∴S△ABC=AB2=. 设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1), ∴, 解得k=-,b=2, ∴y=-x+2. 同理求得直线AC的解析式为:y=x-. 如答图1所示, 设直线l与BC、AC分别交于点E、F,则EF=(-x+2)-(x-)=-x. △CEF中,EF边上的高h=OD-x=3-x. 由题意得:S△CEF=S△ABC, 即:EF•h=S△ABC, ∴(-x)•(3-x)=×, 整理得:(3-x)2=3, 解得x=3-或x=3+(不合题意,舍去), ∴当直线l解析式为x=3-时,恰好将△ABC的面积分为相等的两部分. (3)存在. 如答图2所示, 过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB-OG=1. 过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形. 过点P作PH⊥x轴于点H,则易证△PAH≌△BCG, ∴PH=BG=1,AH=CG=3, ∴OH=AH-OA=2, ∴P(-2,1). 抛物线解析式为:y=x2-x-2,当x=-2时,y=1,即点P在抛物线上. ∴存在符合条件的点P,点P的坐标为(-2,1).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在坐标系xOy中,已知D(-5,4),B(-3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.
(1)当t为何值时,PC∥DB;
(2)当t为何值时,PC⊥BC;
(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.
查看答案
在数学活动课中,小辉将边长为manfen5.com 满分网和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.manfen5.com 满分网
查看答案
5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.
(1)小明一共有多少种可能的购买方案?列出所有方案;
(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.
查看答案
manfen5.com 满分网莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.
(1)求销售量y与定价x之间的函数关系式;
(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.
查看答案
6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据manfen5.com 满分网后,绘制的不完整的统计图表:
关注问题频数频率
A240.4
B120.2
Cn0.1
D18m
合计a
1
请你根据图表中提供的信息解答以下问题:
(1)根据图表信息,可得a=______
(2)请你将条形图补充完整;
(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.