满分5 > 初中数学试题 >

已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别...

已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
manfen5.com 满分网
(1)由三角形全等可以证明AH=AB, (2)延长CB至E,使BE=DN,证明△AEM≌△ANM,能得到AH=AB, (3)分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,然后分别延长BM和DN交于点C,得正方形ABCE,设AH=x,则MC=x-2,NC=x-3,在Rt△MCN中,由勾股定理,解得x. 【解析】 (1)如图①AH=AB. (2)数量关系成立.如图②,延长CB至E,使BE=DN. ∵ABCD是正方形, ∴AB=AD,∠D=∠ABE=90°, 在Rt△AEB和Rt△AND中,, ∴Rt△AEB≌Rt△AND, ∴AE=AN,∠EAB=∠NAD, ∴∠EAM=∠NAM=45°, 在△AEM和△ANM中,, ∴△AEM≌△ANM. ∵AB、AH是△AEM和△ANM对应边上的高, ∴AB=AH. (3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND, ∴BM=2,DN=3,∠B=∠D=∠BAD=90°. 分别延长BM和DN交于点C,得正方形ABCD, 由(2)可知,AH=AB=BC=CD=AD. 设AH=x,则MC=x-2,NC=x-3, 在Rt△MCN中,由勾股定理,得MN2=MC2+NC2 ∴52=(x-2)2+(x-3)2(6分) 解得x1=6,x2=-1.(不符合题意,舍去) ∴AH=6.
复制答案
考点分析:
相关试题推荐
某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型
价格
A型B型
进价(元/盏)4065
标价(元/盏)60100
(1)这两种台灯各购进多少盏?
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?
查看答案
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判断AB,AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
(参考数据:manfen5.com 满分网≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)

manfen5.com 满分网 查看答案
如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;
(2)不解关于x,y的方程组manfen5.com 满分网,请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过点P?请说明理由.

manfen5.com 满分网 查看答案
如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.则图中阴影部分的面积   
manfen5.com 满分网 查看答案
manfen5.com 满分网如图,CD⊥AB于E,若∠B=60°,则∠A=    度. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.